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ABSTRACT

We develop)and assess a number 4;.quivalent mathematical formulations of the general equi-
librium problem in economics. V%.begin~with the traditional representation as a nonlinear
coraplemetaxity prob'ei and dc.vciop alternative representations as nonlinear optimization
problems. All of our formulations depart from previous approaches by including an explicit
linear equality for price normalization and a matched artificial variable which must be zero
at any equilibrium solution. This structure has the theoretical and computational advantage
that any linearization of the equilibrium problem has a feasible complementary solution.
Moreover, under a reasonable rank condition, a basic complementary solution exists which

can be successfully computed by Lemke's almost-complementary pivoting method.

We describd five general-purpose methods which can be applied to solving the equilibrium

problei/ The common feature of these methods is solving a sequence of linearized prob-
lems. We establislf~a number of equivalences between the methods, when applied to the
equilibrium problem, and assess their local and global convergence properties in that con-
text. An important new tool in this analysis is another problem formulation based on,
a differentiable exact penalty function. This formulation provides, perhaps for the first
time, a rigorous means of evaluating the progress of a sequential method for computing an
equilibrium solution. Our analysis reveals a basic theoretical dilemma in solving general
equilibrium problems by these sequential methods. One group of methods produces iterates 4.

that converge from any starting point, but the sequence may converge to a non-equilibrium
point.(Another group produces iteratesthat may fail to converge, but successfully converg-
ing sequences do attain an equilibrium.) ( . .

We perform a number of computational experiments on two small problems from tlic 1itora-
ture. The results show considerable variation in the solution times for the various methods,

but all methods succeed in locating an equilibrium, even from poor starting points. This
successful performance (in addition to that reported by other researchers) suggests that
the kinds of general equilibrium models formulated in practice possess certain favorable
computational properties that theoretical analysis has yet to discover.
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1
INTRODUCTION

An important and powerful paradigm in economic theory is the notion of general equilib-
rium, that is, a set of prices (and corresponding quantities) which balance the supply and
demand for all commodities. The term general equilibrium is used equally to refer to the
market-clearing prices and quantities, themselves, as well as to the "invisible hand" mech-
anism by which markets are cleared. The concept of equilibrium is an old one, but it is
also one for which current interest is both diverse and intense. The advent of the com-
puter has given rise to a class of so-called computable general equilibrium models, which
may be distinguished by the explicit intent to mathematically represent the equilibrium
system, compute a solution of the system, and derive policy or other conclusions by com-
paring solutions across different model specifications. As well exemplified by the collection
of papers in a recent Mathematical Programming Study [Mann 85], ever more sophisticated
applications of computable general equilibrium models both stimulate and take advantage
of improvements in computational procedures.

Against this backdrop, the present research is concerned with various aspects of the formu-
I ation and solution of general equilibrium problems. The key idea will be to define, compare,
and exploit the properties of a number of different but equivalent mathematical formula-
tions of the problem. While most of the results presented are theoretical in nature, our
underlying interests and motivations are very much computational. These interests, cou-
pled with some basic pragmatism, serve to establish some limits on the kinds of problems
to be considered.

1.1 Scope of this research

First and foremost, our attention is limited to general equilibrium problems which require
simultaneous determination of all prices (and quantities) in the economy. In contrast,
partial equilibrium problems accept certain prices as given exogenously. This important
difference has implications for the mathematical properties of the problems which, on the
whole, make partial equilibrium models considerably easier to solve than general equilib-
rium models of comparable size and functional complexity. Partial equilibrium problems
typically satisfy some contraction or monotonicity property which guarantees the conver-
gence of an appropriate iterative method, examples of which are legion. Many successful
approaches are specializations of the general iterative procedures for variational inequalities
surveyed by Pang and Chan [PC 82]. An historically important example is the so-called
PIES method [AH 82]. Also in this group are a variety of methods originally applied to
network/traffic equilibria and more recently extended, in the work of Dafermos and Nagur-
ney, to spatial equilibria and oligopolistic markets; see, for instance, [DN 84] and [Nag 87].
Viable approaches for specific large-scale models of energy markets have also been based on
Newton-like methods [Phi 85] and on Gauss-Seidel iterations [Mur 83].

15



2 1.1 Scope of this research

In sharp contrast, general equilibrium problem-, can almost never be shown to satisfy known
sufficient conditions for the convergence of established iterative methods. (An important
exception is noted below.) Consequently, procedures which perform efficiently on partial
equilibrium models need not and typically do not perform especially well in a general equi-
librium context. Conversely, while most of the findings and methods addressed in this
research are also applicable to the partial equilibrium case, we would not expect the meth-
ods to be competitive with procedures that take explicit advantage of partial equilibrium
properties.

In a general equilibrium context, there are three distinguishing features of a problem which
determine not only how the real-world economy is stylized but also how difficult the problem
proves to be in terms of computation:

1. departures from the pure competition paradigm
2. the representation of final consumer demand
3. the representation of production.

Simplifying assumptions in each of these areas define the class of general equilibrium prob-
lems to be considered in this research.
Departures from a purely competitive equilibrium market structure can take many forms.

Taxes and subsidies on consumption or production activities effectively cause consumers and

producers to see different prices for the same commodity. Price rigidities such as a mini-
mum wage or regulated energy prices restrict the domain over which equilibrium prices can
be sought, possibly preventing market-clearing altogether. Balance of payments constraints
can also be included (somewhat loosely) under this heading. The work of Shoven and Whal-
ley (e.g., [SW 73]) has spawned an entire generation of applied general equilibrium models
specifically addressing taxes and other market interventions and imperfections. While such
depart.ures from pure competition are certainly characteristic of real-world economies, their
representation in a model can present serios problems of bth a theoretical and compu-
tational nature. Since the kind of computational analysis presented here has proved to be
difficult enough even in the pure competition case, similar consideration of non-competitive
structures must be left a subject for future research.

With respect to the representation of final consumer demand, we restrict our attention to
twice continuously differentiable aggregate excess demand functions. As a theoretical mat-
ter, this assumes away situations in which a utility-maximizing choice occurs at a boundary
of the space of consumption quantities (most typically, at a point where the consumption
of some commodity is zero). The work of Mas-Colll [MasC 85] demonstrates that such sit-
uations are "rare" in a rigorous sense that need not be defined here. As a practical matter,
virtually all demand functions which are actually used in applied equilibrium modeling sat-
isfy this condition. What is ruled out are demand correspondences and piecewise-specified

functions such av might he derived from corresponding linear or piecewise-specified utility
functions for individual consumers. Two of the few examples of applications with nondiffer-
entiable demand may be found in [DEG 79] and [MCW 80], wherein a number of conskiier
classes are each modeled explicitly by linear programs.

-w -' ~ ~ -



1.1 Scope of this research 3

We also exclude from consideration the class of integrable demand functions, though in this
case the reason is that models with such functions are relatively easy to solve. An aggregate
demand function is said to be integrable if it can be derived from the optimality conditions
for maximizing a corresponding utility function. In this case, it is well known that a general
equilibrium solution can be computed (readily) by maximizing the utility function over the
set of consumption levels which can be feasibly produced. As a theoretical matter, the
conditions (on individual demands) required for the existence of an integrable aggregate
demand function are quite restrictive. As a practical matter, integrable demand systems
are often employed anyway, precisely because of the associated computational advantages.
An example from our own work is the PILOT energy-economic model [SMD 871, in which
the dynamic representation of production activity is so large that computation even with
integrable demand functions is an expensive process. Indeed, it was precisely the desire
to understand the computational consequences of abandoning the integrability assumption
that initiated this research.

With respect to the representation of production, our focus is on models with activity
analysis (or linear) production. This is a restrictive assumption, to be sure, although
in principle any convex production structure can be approximated by a sufficiently large
activity-analysis representation. Linear production figures prominently in early works on
equilibrium and, in particular, in the pioneering computable formulations of Scarf [Sca 73].
It is also a principal feature of PILOT.

Happily, a model structure with (twice) continuously differentiable demand and linear pro-
duction will also permit the incorporation of nonlinear production structures represented by

(three times) continuously differentiable production (or profit) functions that reflect strictly
decreasing returns to scale. This is accomplished by defining a composite demand function
as the difference between consurrcr demand and the (nonlinear) net output from produc-
tion, which in this case is uniquely determined as a function of prices. (The consumer
demand component must be carefully defined so as to include the distribution of the pos-
itive net profits of production.) The composite demand function so defined possesses the
same mathematical properties as the consumer demand functions employed throughout this
research. The only restriction is the differentiability assumption, which in fact is satisfied
by most of the nonlinear production or profit functions that are actually used in applied

* equilibrium modeling.

The production structures that are not immediately covered by our computational analysis
are either nonconvex or involve nonlinear technologies with constant returns to scale. The
latter omission is particularly unfortunate, given the theoretical importance and widespread
use of such structures in equilibrium models. In the final chapter, we outline some very
recent observations which suggest that most of the results obtained in this research can
indeed be extended to the case of nonlinear production with constant returns.

After consideration of the above limitations of focus, we are left with an important class
of competitive general equilibrium problems with continuously differentiable, nonintegrable
demand and linear (or decreasing returns) production. Our theoretical analysis of solutica
algorithms for such problems will not explicitly address the issue of model size; nonetheless,
our principal interest is with procedures which could be applied to medium- and large-scale
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problems containing hundreds or thousands of commodities and activities. For this reason
we will not address computational procedures based on homotopy or fixed-point methods.

Such methods, as originated by Scarf [Sca 73] and more recently implemented by Blroadie
[Bro 85], are both general and robust, but their application to large-scale models is not
currently feasible.

We also will not specifically analyze three related families of methods designed for the case in
which nonintegrability of the final demand functions arises directly from aggregating known
integrable demand functions for a manageable number of consumer classes. Indeed, the basic
specification of consumer behavior is through the underlying direct utility functions. The
methods of I)antzig, Eaves, and Gale [DEG 79] and of Ginsburgh and Waelbroeck [GW 81]
seek a competitive general equilibrium by solving a sequence of optimization problems in
which the objective function is a weighted sum of individual utilities. The method of Manne,
Chao, and Wilson [MCW 80] solves utility-maximization problems for individual consumers
so as to generate consumption bundles for use in a column generation procedure that seeks
a combination of bundles consistent with aggregate supply-demand balances and the prices
dual to those balances. While it may prove possible to analyze the convergence of these

W,ethods using the machinery of Chapter 5, such an analysis has not been performed as
part of this research.

1.2 Tools of the trade

In order to fully characterize the relevant mathematical characteristics of a general equi-
librium problem, Chapter 2 will provide a brief but reasonably self-contained discussion of
the problem components and equilibrium conditions. Much of this material is likely to be
familiar to the reader, but the repetition seems necessary in order to define the relevant
context for the computational analysis that follows.

In contrast, it would be unrealistic to attempt to provide here a review of the many basic
aspects of mathematical programming and complementarity theory that will be used exten-
sively throughout the later chapters. We must in fact presume that the reader is more than

familiar with these matters. Concepts to be employed include the standard formulations
of mathematical programs (linear, quadratic, and general nonlinear) and of linear and non-
linear complementarity problems. 'We also employ the first- and second-order optimnality
conditions (both necessary and sufficient) and the associated fundamental concept of the

Lagrangian function and Lagrange multipliers. Notions of basic solutions, uniqueness, and
regularity prove to be important in several respects. In light of the breadth of the theories
employed, we are also in no position to provide well-balanced citations for the many path-
breaking contributions to this body of theory by Dantzig, Kuhn and Tucker, Cottle, and
Lemke. A rigorous treatment of the fundamental concepts of mathematical programming,
with appropriate references to the original contributions, can be found in th text of Avriel

[Avr 76], for instance. A brief review of the basic concepts and origins of complementarity
theory can be found in [Cot 76].

We also will be concerned with a variety of algorithms for solving mathematical programs
and comnplementarity problems. The features of some of these algorithims will be reviewed as
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they have direct bearing on our results. Reference will be made to Newton and quasi-Newton
methods without elaboration. Penalty function concepts will be used freely. Aspects of
convergence theory will be relevant, but there will be no detailed convergence proofs. A
comprehensive survey of the state of the art in optimization algorithms (as of about 1980)
is available in the text of Gill, Murray and Wright [GMW 811. A brief review of more

recent developments will soon appear in a forthcoming handbook of operations research[GMSW 87].

1.3 Outline of presentation

The balance of this document is organized as follows. First, we define some acronyms and
notation that will be used recurrently in the later chapters. In Chapter 2 we build up the
computable general equilibrium problem from its component parts, which entails describing
the relevant mathematical properties of the demand and production structures, discussing
the convention for normalizing prices, and delineating the mathematical conditions that
define an equilibrium solution. In Chapter 3 we develop two alternative computational
formulations of the general equilibrium problem. The first follows closely the statement of
the problem in Chapter 2 and comprises a specially structured nonlinear complementarity
problem. The second is a new development comprising a nonlinear program constructed
to be equivalent to the complementarity problem. Both formulations depart from more
traditional formulations by including both an explicit equality for price normalization and
a matching artificial variable in the supply/demand balances.

In Chapter 4 we define five classes of methods for solving these equivalent formulations.
The common feature of these methods is solving a sequence of subproblems defined by lin-
earizing the aggregate demand functions. The methods may be distinguished by the type
of linearization employed and the kind of solution sought relative to the linearized con-
straints. All of these methods are applicable to more general problems, but we demonstrate
some interesting equivalences which arise when the methods are specifically applied to the
equilibrium problem.

The local and global convergence properties of these methods are the subject of Chapter 5.
We briefly survey known results and then examine the applicability of those results in the
context of a general equilibrium problem. We develop an important new tool in under-
standing global convergence properties in the form of another equivalent formulation of the
problem, which replaces the nonlinear constraints of the nonlinear programming formula- k.
tion with a differentiable exact penalty function. This formulation provides, perhaps for the N.

first time, a rigorous means of evaluating the progress of a sequential method for computing
an equilibrium.

In Chapter 6 we demonstrate the value and power of our formulation of the problem with
both the price normalization and the matching artificial variable. In particular, we prove
that the normalization can readily be specified in such a way as to guarantee that any
linearization of the nonlinear equilibrium problem has a feasible complementary solution.
Moreover, under a reasonable rank condition (discussed in Chapter 4), a basic complemen-
tary solution exists which can be successfully computed by Lemke's almost-complementary
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pivoting method.

In Chapter 7 we report the results of a number of computational experiments on two
small problems from the literature. One has a unique equilibrium, while the other has
three distinct equilibria. The results show considerable variation in the solution times for
the various methods, but all methods succeed in locating an equilibrium, even from poor
starting points.

Finally, in Chapter 8 we attempt to provide some perspective on the collection of results
obtained and suggest some possible directions for future research. Overall, our analysis
reveals a basic theoretical dilemma in solving general equilibrium problems by the sequen-
tial methods studied. One group of methods produces iterates that converge from any
starting point, but the sequence may converge to a non-equilibrium point. Another group

produces iterates that may fail to converge, but successfully converging sequences do attain
an equilibrium. Nonetheless, the successful performance of these methods on actual models
(both in our experiments and those of others) suggests that the kinds of general equilib-
rium models formulated in practice possess certain favorable computational properties that
theoretical analysis has yet to discover.

1.4 A word on acronyms, notation, and internal references

This section provides a convenient listing of important acronyms and notation to be used in
the following chapters. Both here and throughout, references to other parts of this document
will denote chapter, section, and subsection. For instance, the reference "Section 3.2.1"
denotes Subsection 1 of Section 2 of Chapter 3.

Throughout this document, vectors should be taken as column vectors unless explicitly
transposed, as in T. The one exception to this is gradient vectors, for which we use the
row convention. In particular, the Jacobian matrix of a vector-valued function f(z) will be

denoted by Vf(z), for which the (ij)-th element is a , where fi(z) denotes the i-th

component of f(z).

We also will make use of index set notation for identifying sub-vectors and submatrices.
For instance, if J is a set of indices, z, refers to the sub-vector of components of a vector z
whose indices are in the set J. For matrices, MJK identifies the submatrix of a matrix M

determined by the rows with indices in set J and the columns with indices in set K. We
will use the notation M.. to indicate a submatrix containing all of the columns of M and

the rows with indices in set J. Similarly, M.K selects all of the rows but only the columns

in set K. The cardinality of a finite set J is indicated by jJ. Set subtraction (finite or
infinite) will be indicated by J \ K, meaning the set of all elements of set J that are not
also in set K.

V. V~ V.~ *, .~.; ~ '*,*%*~ ~ -~ .~



1.4.1 Acronyms

1.4.1 Acronyms

CGE Computable General Equilibrium problem (Section 2.4)

NLCP NonLinear Complementarity Problem

NLP NonLinear Program

QP quadratic Program

LP Linear Program

CNLP equivalent NLP formulation of an NLCP (Section 3.1)

Eq-NLCP NLCP formulation of CGE (Section 3.2)

Eq-NLP NLP formulation of CGE (Section 3.3)

DEPF Differentiable Exact Penalty Function (Section 5.2.1)

Eq-DEPF DEPF formulation of CGE (Section 5.2.1)

SLCP Sequence of Linear Complementarity Problems (Section 4.1)

SQP Sequence of quadratic Programs (Section 4.2)

SLP Sequence of Linear Programs (Section 4.4)

SLTZ linearization method based on Slutzky matrices (Section 7.2.2)

Sp P O "' 'l.l ' ." l'' ' "'"P".'" ", . p .mm, . . . - . - .d



8 1.4 A word on acronyms, notation, and internal references

1.4.2 Notation

RY! nonnegative orthant of r-dimensional Euclidean space

I symbol denoting a complementarity condition

zi elements of vector z with indices in set J

MJ K submatrix of matrix M; row indices in set J, column indices in set K

IJI cardinality of a finite set J

J \ K all elements of set J not also in set K

e a vector of ones

ej the i-th unit vector

m number of commodities/prices

n number of production activities

p m-vector of prices

Y n-vector of production activity levels

v artificial variable

d(p) m-vector of demands net of endowments (and nonlinear supplies)

X m-vector of approximate demands

A m x n activity analysis matrix

h price normalization vector (hTp = 1)

p Lagrange multipliers for supply/demand balances

9 Lagrange multipliers for nonprofitability conditions

i3 Lagrange multiplier for price normalization

.o,

,

:U.
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I2

THE COMPUTABLE GENERAL
EQUILIBRIUM PROBLEM (CGE)

In this chapter we build up the computable general equilibrium problem (CGE) from its
component parts. This entails describing the relevant mathematical properties of the de-

mand and production structures, discussing the convention for normalizing prices, and

finally delineating the mathematical conditions that define an equilibrium solution. Much

of this material is based on the excellent presentations by Kehoe [Keh 82] and Mas-Colell
[MasC 85].

2.1 Properties of demand

Let m denote the number of commodities and associated prices represented in the equilib-
rium problem. Let p denote an m-vector of prices and d(p) an m-vector of final demands
as a function of prices. For generality and notational convenience, d(p) represents final
demand net of any initial endowments or price-sensitive nonlinear supplies. Typically, d(p)
is undefined at the origin but defined for all strictly positive prices. If d(p) is not defined
on all of WR' \ {0}, then some further assumption about boundary behavior is necessary in
order to ensure the existence of equilibrium prices in the domain of d(p). To this end, define
a set U contained in the boundary of R!' over which d(p) is undefined. (Note: 0 E U.) The
domain of definition of d(p) is denoted by V = RW \ U.

We consider demand functions, d(p), that satisfy the following properties on :

(D1) homogeneity of degree zero (d(Ap) = d(p), VA > 0)

(D2) Waras' law (pTd(p) = 0)

(D3) boundedness from below (3,r > 0 : d(p) -T)

(D4) twice- continuous differentiability

(D5) boundary behavior (for any P E U \ {0} and any sequence

p' _. f, p' E D it must be that jId(p')jj - oo).

Assumption (D5) is a technical point important to issues of existence and setting up ma-
chinery to investigate regularity and uniqueness of equilibria. It is perhaps most easily
understood by example. If the demand functions are derived from a Cobb-Douglas utility
function, the demand for any commodity becomes infinite as its price approaches zero. In

this case, the set U is the entire boundary of R'.

As to the other properties, homogeneity of degree zero (D1) follows from the general equi-
librium nature of the problem (i.e., all prices are endogenous) and an implicit assumption
that money is neutral and has no direct effect on economic decisions. Walras' law (D2) is
a condition that all income is spent. This property is inherited by the aggregate demand

.9
- . V VV .(



10 2.1 Properties of demand

function when it is true for the demand functions of individuals. The implicit assumption
is utility-maximizing behavior with non-satiation. Boundedness from below (D3) is the
economically meaningful condition that initial endowments (and price-sensitive nonlinear
supplies) axe finite. Property (D4) is a restrictive assumption in theory, but not so restric-
tive in terms of practical computations. The motivations for this limitation were discussed
in Section 1.1.

The above domain definitions and properties require special interpretation in the case of
economies with primary and/or intermediate commodities used only in the production sec-
tor. A primary commodity is one for which aggregate demand is constant and equal to
the negative of the aggregate endowment. (There is a potential ambiguity in defining the
demand for a primary commodity when the price is zero. Any quantity in the range be-
tween the total endowment and the amount actually used by the production sector is an
acceptable definition. It is convenient to treat the demand as constant, and, in the presence
of a free disposal assumption to be made below, this convention can be used without loss of
generality.) An intermediate commodity is one for which aggregate demand is identically
zero. Aggregate demand for final commodities is unaffected by the prices of intermediate
commodities. In the presence of primary commodities, it is essential that the set U include
all price vectors in which only primary commodities have positive prices. This rules out the
rather anomalous situation in which consumers have income but anything they might want
to buy is free. If intermediate commodities exist, all definitions and properties above are to
be interpreted in terms of demand functions defined for primary and final commodities only.
Prices of intermediate commodities do not enter the demand functions and consequently
are irrelevant to the definition of the domain D.

The special model structures that arise in the case of intermediate and primary commodities
will be explicitly relevant only in Chapter 6. The rest of our results and discussions apply
independently of the commodity classifications. As explicitly carrying the partitioning of
commodity balances and prices would only make the notation more cumbersome, we will
use the more general and simple notation.

The homogeneity property and Walras' law imply some strong relationships between the
first- and second-order derivatives of the demand functions. Homogeneity of degree zero
(Dl) implies via Euler's law that:

(H1) Vd(p)p = O.

Further differentiating this identity implies:

(112) Vdi(p) = -pTvd(p).

Differentiating Walras' law (D2) implies:

(Wi) VTd(p)p = -d(p).

Further differentiating this identity implies:

(W2) E, p,V~d,(p) = - [Vd(p) + vTd(p)].

An important implication of properties (H1) and (Wl) is that Vd(p) can be symmetric only!I
-'., V - -!' i U S S S ~ * -



2.2 Properties of production 11

if d(p) is identically zero. We axe not aware of any previous use being made of properties

(H2) and (W2). For our purposes, these relationships prove instrumental in establishing

the equivalence of two solution methods in Section 4.3.

The properties itemized in this section are the only restrictions placed by economic theory

on differentiable aggregate excess demand functions. This generality of form is the principal

source of difficulty in solving general equilibrium problems.

2.2 Properties of production

Let n denote the number of linear production activities in the equilibrium problem (exclud-

ing disposal activities). Let y denote an n-vector of production activity levels and A the

associated m x n activity analysis matrix. In this case, the net output from production is

defined by the polyhedral cone {Ay : y _ 0). As a function of prices, the vector of excess

profits obtained per unit of operation of the various production activities is given by ATp.

Unless a CGE model is specifically designed to address issues of indivisibility and/or in-

creasing returns to scale in production activity, it is generally assumed that the set of

aggregate production possibilities is closed and convex and admits inactivity. These condi-

tions are clearly met in the case of linear production considered in this research. The other
characteristic assumptions are the following:

(Al) free disposal of excess supply

(A2) output requires input (Ay t> 0, y >_ 0 =::o Ay = 0).

Any departures from free disposal property (Al) axe readily represented by defining ap-
propriate resource-consuming activities. Property (A2) is the specialization to linear pro-

duction of the economically meaningful condition that no combination of activities can
result in a net output (of anything) without a net input (of something). This property is
mathematically equivalent to the following statement in terms of price conditions:

(A2') prices yielding no profits (3p > 0: ATp < 0).

Economically, this means that positive prices always exist which eliminate all excess profits.

2.3 Price normalization

Because of the neutrality of money in the class of general equilibrium problems under
consideration, an equilibrium solution determines only relative prices. This invariance to

price scale is reflected in the homogeneity of degree zero of the final demand functions,
property (Dl), and in the fact that the relative profitabilities of linear production activities

(ATp) are invariant to a positive scaling of all prices. A price normalization is a mathematical

construct employed to remove this degree of freedom and determine a price scale (however
arbitrary).

In principle, any nonnegative function of prices h(p) which is homogeneous of degree one
can be used to define a price normalization: h(p) = constant. It is somewhat traditional in
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economic literature to employ a numiraire good, that is, a selected commodity whose price
is arbitrarily fixed (at unity, say). Mas-Colell [MasC 85] makes general use of the unit ball:
JpJ = 1. Many others, including Kehoe [Keh 821, employ the unit simplex: eTp = 1, where
e is a vector of ones.

Given the inherent arbitrariness of the mode of price normalization, it makes sense to select
a normalization which imparts desirable theoretical and/or computational properties to the
equilibrium system. For present purposes we employ a general linear normalization: hTp -

1, where 0 $ h > 0. Note that this includes the unit simplex and specifying a num6raire
good as special cases, simply by setting h = e or h = ei, where ei is the i-th unit vector
and i is the index of the num6raire commodity. In Chapter 6 we build upon earlier work of
the author [Sto 851 and of Eaves [Eav 87] in using the price normalization to computational
advantage. In particular, we demonstrate that normalizing on a simplex of prices for final
and primary commodities (in conjunction with including a mnatched artificial column to be
discussed in the next chapter) is sufficient to guarantee the feasibility and solvability of
subproblems derived by linearizing the final demand functions in the equilibrium problem.

2.4 General equilibrium conditions

Given the definition of demand and production components provided above, we can now
delineate the mathematical conditions which characterize a general equilibrium solution.
A general equilibrium is a set of nonnegative prices p and nonnegative production levels y
which satisfy:

(El) d(p) < Ay (demand cannot exceed supply)

(E2) ATp < 0 (no positive excess profits)

(E3) hTp = 1 (price normalization)

(E4) prd(p) - pay (excess supply has a zero price and a
positive price means the market clears)

(E5) yTATp = 0 (activities used have zero profit and
no unprofitable activities are used).

Note that free disposal is reflected in (E4) and in the use of an inequality in (El). Condition
(E5) is in fact implied by (E4) and Walras' law (D2). Changing the price normalization in
(E3) does not affect the essential characteristics of an equilibrium solution.

Conditions (E4) and (E5) are called complementarity conditions. Each inequality in (El)
and (E2) is associated with a matching price or activity variable, respectively. Complemen-
tarity of a given pair means that if the inequality is strict, the matching variable must be
zero, and, conversely, if the variable is positive, the inequality must be satisfied as an equal-
ity. (This is equivalent to multiplying through each inequality by its matching variable and
requiring the result to be an equality.) Conditions (E4) and (E5) are precisely the summing
of these pairwise complementarity conditions fox inequalities (El) and (E2), respectively.



2.5 Existence of equilibrium solutions 13

Since all inequalities have the same sense and all variables are nonnegative, equality holds
for the sum if and only if all matching pairs are individually complementary.

While complementarity is an attribute serving to define an equilibrium solution, an inter-
esting aspect of the general equilibrium problem is that any nonnegative feasible solution
of (E1)-(E2) automatically satisfies the complementarity conditions (E4)-(E5). Because of
Walras' law, the left-hand-side of (E4) is identically zero, making (E4) in effect the same
as (E5). For the same reason, multiplying through inequality (El) by any p 2! 0 implies
prAy > 0. In turn, multiplying th ough inequality (E2) by any y _ 0 implies pTAy <_ 0.
Hence, PTAy = 0 and any nonnegative feasible solution of (E1)-(E2) satisfies (E4)-(E5).

The upshot of this result is that the general equ: ibrium problem is, in essence, a (nonlinear,
nonconvex) feasibility problem. This characteristic will resurface a number of times in the
dircussions of later chapters. Nonetheless, the complementarity aspect remains central to
one powerful and influential approach to formulating and solving the computable general
equilibrium problem. It also distinguishes this formulation from specifications made purely
in terms of simultaneous equations with no nonnegativity restrictions. Such specifications
do not admit linear production and must presume that any solution will obtain positive
prices. The complementarity formulation could be reduced to simultaneous equations given
prior information as to the binding inequalities, which may not be limited to those for which
the complementary prices and activities are positive at the equilibrium solution.

2.5 Existence of equilibrium solutions

The properties of demand and production delineated above are sufficient to ensure the
existence of equilibrium solutions in the domain D. Proofs are traditionally based on a fixed-
point argument using either the Brouwer or the Kakutani fixed-point theorem (depending
on the continuity of a map constructed on a compact, convex subset of the price space). The
most appropriate proof for the present context is probably that of Kehoe [Keh 82], which
explicitly deals with boundary behavior and assumption (D5), as well as with primary and
intermediate commodities.

Note that the polyhedral region defined by conditions (E2) and (E3) is certainly closed
and convex. To satisfy the assumptions for an existence proof, the price normalization
is used to bound the region, as is easily done, for instance, by using the unit simplex
(h = e). (It is also possible to normalize only the prices of final and primary commodities;
see [Keh 82].) Once existence has been established as a theoretical matter, however, it is no
longer necessary to use the same price normalization for computational purposes. Indeed,
a normalization applied only to a subset of the prices may well prove advantageous, as we
will show in Chapter 6. The important proviso here is that positive scalings of (at least
one of) the equilibria -xisting on the unit simplex (say) be admitted by the alternative
price normalization employed for computation. The only situation in which this would not
be true is if all prices associated with positive components of h % 0 are in fact zero in all
equilibrium solutions. The most likely example of this unfortunate circumstance would be
choosing as the num~raire good a commodity which must have zero price at equilibrium.
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14 2.5 Existence of equilibrium solutions

Throughout the following discussions, it will be assumed that h has been chosen so as not
to rule out the equilibrium solutions. This is not a restrictive assumption, since h =e
can always be used in the absence of enough insight into model structure to allow a better
choice. Consequently, existence will not be an issue in any of the succeeding discussions of
alternative mathematical formulations of the general equilibrium problem.

I..
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TWO EQUIVALENT FORMULATIONS OF CGE

In this chapter we develop two equivalent formulations of the computable general equi-
librium problem (CGE). The first follows closely the statement of CGE in the previous
chapter and comprises a specially structured nonlinear complementarity problem (NLCP).
The second is a new development comprising a nonlinear program (NLP) derived from
the NLCP by minimizing the nonnegative sum of the complementarity conditions over the
same inequalities. Both formulations depart from more traditional formulations by includ-
ing an artificial variable in the inequalities representing the supply/demand balances. This
artificial variable proves to be helpful in two respects: (1) providing a simple characteriza-
tion of an equilibrium solution, and (2) ensuring the solvability of subproblems generated
by iterative methods for solving either formulation. Discussion of point (2) is deferred to
Chapter 6.

First we briefly review the general form of an NLCP. This is partly to establish notation
and partly to demonstrate some useful properties which later will be specialized to the
formulation of CGE.

3.1 The nonlinear complementarity problem

The general nonlinear complementarity problem is defined as follows. Given a vector-valued
function f(z) defined for z > 0, find a solution that satisfies:

(NLCP) z > O, f(z)> O and zTf(z) = O.

Any z satisfying the two nonnegativity conditions is called a feasible solution. For any such
feasible solution it must be the case that zifi(z) > 0 for all i and hence that zTf(z) > 0. A
complementary solution is a feasible solution that satisfies the complementarity condition
zifi(z) = 0 for all i. Because of the nonnegativity of each term, this condition is equivalent
to zTf(z) = o.

It is well known that the general nonlinear complementarity problem may be equivalently
stated as a nonlinear program:

(CNLP) minimize zTf(z) subject to z > 0, f(z) > 0.

Note that the objective function of (CNLP) is bounded below by zero on the feasible region.
Given the existence of a solution of (NLCP), it follows that global minimizers of (CNLP)
are complementary solutions of (NLCP) and vice versa.

The special case of an affine f(z) = Mz + q produces a linear complementarity problem,
for which the corresponding CNLP form is a quadratic program with Hessian M + MT.

Mathematical programs of the CNLP form have been called composite programs by Cottle
(e.g., in [Cot 641), whose original studies of the form pertained to the optimality conditions

15
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16 3.2 CGE as a nonlinear complementarity problem (Eq-NLCP)

for convex quadratic programs. More generally, the (first-order) optimality conditions for

any NLP can be represented by an NLCP, and this establishes an important connection
between nonlinear complementarity and nonlinear programming. It is essential, however,
not to confuse this connection for a special class of NLCPs with the constructed equivalence
between problems (NLCP) and (CNLP) above, which applies regardless of the origin and
specific form of (NLCP).

3.2 CGE as a nonlinear complementarity problem (Eq-NLCP)

We now transform the statement of equilibrium conditions for CGE in Section 2.4 into

a highly structured NLCP. We begin by introducing an artificial variable v into the sup-
ply/demand balance inequalities (El). The associated artificial column has the appearance

of an extra linear supply activity in which, for reasons which will become apparent, the
output coefficients are defined by the price normalization vector h. After some stylistic
reformatting, the CGE problem can be equivalently formulated as the following nonlinear
complementarity problem:

IEq-NLCP[

Find a complementary solution of:

(NLCP1) -d(p) + Ay + hv > 0 1 pO

(NLCP2) -ATp > 0 2- y 2 0

(NLCP3) - hTp = -1 _ v±

(NLCP4) p , y > 0

Here we place the shorthand notation "I p > 0" to the right of an inequality in order to
indicate that each component of the nonnegative vector p is to be pairwise complementary
with the (slack variable of the) associated inequality.

We have innocuously changed the sign of the price normalization constraint so as to produce
a skew-symmetric structure in the two linear blocks of the system of inequalities. The
addition of variable v makes the system square, and its associated inequality is actually the
equality price normalization constraint. Consequently, the variable v is not sign-constrained,
and the complementarity condition is always satisfied. This deviates somewhat from the
standard format of a complementarity problem, but it seems best to avoid the notational
tedium of splitting the price normalization into two inequalities and v into its positive and
negative parts.

The complementarity conditions for Eq-NLCP reduce to a very simple form. To obtain
the appropriate specialization of "zJf(z), " take any feasible solution and multiply through

C.

C.

CV



3.3 CGE as a nonlinear program (Eq-NLP) 17

inequalities (NLCP1) by p > 0 and inequalities (NLCP2) by y > 0. Add the two resulting
scalar inequalities to obtain:

-pTd(p) + pTA + pThv YTP 0.

Now note that the first term vanishes because of Walras' law, (D2) of Section 2.1. The
second and fourth terms cancel, and pTh = 1 by (NLCP3). What is left is simply v > 0.
Hence, any feasible solution of Eq-NLCP necessarily has v > 0, and the complementary
solutions of Eq-NLCP are those feasible solutions with v = 0.

The correspondence of Eq-NLCP to the equilibrium conditions for CGE in Section 2.4 is
immediate. Inequalities (NLCP2) are precisely CGE conditions (E2), and complementarity
with y is exactly (E5). (NLCP3) is just (E3) with a sign reversal. Inequalities (NLCP1)
correspond to (El), with the addition of an artificial term hv. Complementarity with p
corresponds logically to (E4). Despite initial appearances, the presence of hv does not
disturb the equivalence at equilibrium. Since any feasible solution of Eq-NLCP has v > 0,
this solution may not satisfy (El). However, a complementary solution has v = 0 and thus
directly satisfies both (El) and (E4).

It follows then that equilibrium solutions of CGE can be computed by solving problem
Eq-NLCP. It is important to keep in mind the implication of properties (H1) and (W1)
of Section 2.1 that d(p) can never be the gradient of any scalar-valued function. Conse-
quently, even though the linear parts of the problem conform to a skew-symmetric structure,
Eq-NLCP does not represent the first-order conditions for optimality of any nonlinear pro-
gram.

3.3 CGE as a nonlinear program (Eq-NLP)

Constructing the CNLP nonlinear program corresponding to problem Eq-NLCP is partic-
ularly easy since the complementarity conditions reduce to v = 0. Using this fact, we
may define the following nonlinear programming formulation of the computable general
equilibrium problem:

minirmze
subject to

(NLP1) -d(p) + Ay + hv > 0 1 P > 0

(NLP2) -ATp > 0 _ > 0

(NLP3)- h~p - .i

(NLP4) p , y > 0

Note that the inequalities of Eq-NLP are identical to those of Eq-NLCP. At a Karush-Kuhn-
Tucker point of Eq-NLP, each inequality is complementary with an associated Lagrange
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multiplier, and the collection of such multipliers is suggestively denoted by (75, ,0). By
the same argument as made above, v > 0 for any feasible solution of Eq-NLP, and global

minima are those feasible solutions that attain v = 0.

Since global minimizers of Eq-NLP are equivalent to complementary solutions of Eq-NLCP,
the correspondence to equilibrium solutions of CGE is the same as shown above. The
form of problem Eq-NLP makes explicit the observation of Section 2.4 that the equilibrium
conditions of CGE in essence define a feasibility problem. Eq-NLP is precisely seeking a
feasible solution of conditions (E1)-(E3) by minimizing the value of an artificial variable
introduced into (El).

3.3.1 Stationary points of Eq-NLP

Aggregate demand functions axe not in general convex, and finding a global minimum of
a nonconvex program can be an extremely difficult undertaking in practice. In the case of
problem Eq-NLP, we at least have the prior knowledge that global minima have v = 0, so
stationary points found by any applied solution algorithm can be readily and definitively
checked for optimality. In addition, the special structure of Eq-NLP and the properties of
d(p) impart some interesting properties to stationary points of Eq-NLP which suggest that
nonoptimal stationary points may be rare or at least avoidable. While we have not been

able to obtain any conclusive results in this regard, it is worthwhile discussing some partial
results as a starting point (and hopefully motivation) for future research into this issue.

Let (p, Y, b) be a Karush-Kuhn-Tucker (KKT) point of Eq-NLP, with (p3, , b) the associated
Lagrange multipliers. For the present we consider only the first-order conditions, which
entail the following parallel sets of inequalities and complementarity relationships:

(P1) -d(p)+ AV+ h> 0 1P 5_ 0 Vd(p)p + A + h0 > 01 f)_0 (M1)

(P2) -ATji 0 1 > 0 ->AT 0 _1 > 0 (M2)

(P3) -hTp -- 1 1 -hT5 =-1 V (M3)

(P4) 73, P 0 P3, i) >0 (M4)

Equivalent statements of (P1):

(P1W) VTd(p)p + Aq + hi > 0 1P3>0

(Pill) -Vd(p)p +Ap+ h > d(l) I P > 0

The equivalence of conditions (P1W) and (Pl1) to (Pl) follows from properties (W1) and
(ill 1) of Section 2.1. We will refer to the conditions on the left as the primal conditions (hence
the labeling with "P") and to those on the right as the multiplier conditions (hence the
"M"). Because of the nonconvexity of Eq-NLP, the above conditions need not be sufficient
for optimality of the solution.

We now detail a number of observations about the KKT system for Eq-NLP.

W,
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Observation 1. Putting (P1W) in place of (P1) demonstrates that the primal inequalities
are identical in form to the multiplier inequalities at a KKT point. This implies in particular
that the primal feasible solution (p, #, ,V) is also feasible with respect to the multiplier in-
equalities (M1)-(M4). It may not be self-complementary, however, in which case V > 0. As
we have already shown, a primal feasible solution is globally minimal (i.e., complementary)
if and only if V = 0.

Observation 2. Putting (P1H) in place of (P1) gives primal and multiplier conditions which
are precisely the complementary slackness conditions for the linear program of minimizing
v subject to "generic" versions of (P1H) and (P2)-(P4). This linear program will resurface
in Section 4.4.

Observation 3. We may intuitively expect that, at any KKT point, 13 = 0. The reasoning
is that 0 is the Lagrange multiplier for price normalization (NLP3) in Eq-NLP, and neither
(NLP1) nor (NLP2) is affected by changing the price scale. This intuition can in fact be
validated as follows. By complementarity of p with (MI), we have

0 = PTvTd(p)P + PT + pTh = 0 + 0 +.

Here, the first term vanishes because of (H1) of Section 2.1, the second term vanishes
because is complementary with (P2), and the third term reduces to 13 because of (P3).
Observation 4. By a similar argument using complementarity of f5 with (P1), we obtain
3= pTd(p) = -Tvd(p), where the second equality results from transposition and (Wl)

of Section 2.1. Since V > 0 at any non-optimal (non-equilibrium) solution, we may derive
the economic interpretation that the consumption bundle d(p) would not be affordable at
prices p.

Observation 5. By multiplying through (Ml) and (M2) by 0 and 0, respectively, and
then adding the result, we obtain PTVd(p) 3> 0. Adding this inequality to the expression
obtained for V in Observation 4, and again making use of (H1) from Section 2.1, we can
conclude that V < (pl - p)rVd(p)(p - p). In pa. cular this implies that, if by some chance
Vd(p) is negative semidefinite on the linear subspace orthogonal to h, then V must be zero.

We will again have use for these KKT conditions in Chapter 5, wherein we demonstrate
that the multipliers from a nonoptimal stationary point of Eq-NLP can be used to construct

4 a descent direction in a penalty function problem that is equivalent to Eq-NLP.
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SOLUTION METHODS FOR
Eq-NLCP AND Eq-NLP

In this chapter we examine the application of five general-purpose methods to bolving the
nonlinear complementarity problem (Eq-NLCP) or nonlinear program (Eq-NLP) formula-
tions of the computable general equilibrium problem. The common feature of these methods
is solving a sequence of subproblems defined by linearizing nonlinear constraints, i.e., the
aggregate demand functions in the equilibrium problem. The methods may be distinguished
by the type of linearization employed and the kind of solution sought relative to the lin-
earized constraints. The first four methods employ a first-order Taylor's expansion and then
solve an appropriately defined linear complementarity problem (LCP), quadratic program
(QP), linear program (LP), or projected Lagrangian problem, respectively. The fifth class
of methods employs any of a number of alternative linearizations and then solves either an
LCP or a QP. We defer the discussion of convergence of these methods to the next chapter.

Our list of methods by no means includes all possible optimization methods for solving
problem Eq-NLP. In particular we omit sequential unconstrained methods based on penalty
or barrier functions (although such functions may appear as merit functions guiding one of
the other methods considered). For the most part, this reflects a bias towards exploiting as
much as possible the largely linear nature of the CGE problem under study.

4.1 A sequence of linear complementarity problems (SLCP)

The notion of solving a nonlinear complementarity problem by generating and solving a
sequence of linear complementarity problems is a natural analog of well-studied methods
for solving systems of nonlinear equations by sequences of linear equations. In particular,
the analog of Newton's method is based on employing a first-order Taylor's expansion as the
mode of linearization. Important contributions to the extension of Newton's method to NL-
CPs are found in the algorithm of Eaves [Eav 78] and in the work of Josephy and Robinson
on generalized equations, which is comprehensively surveyed in [Rob 82]. The NLCP is an
important special case of the generalized equation, and Josephy in [Jo-N 79] demonstrates
that the application of Newton's method to the generalized equations corresponding to an
NLCP results in solving a sequence of LCPs.

Mathiesen independently elaborated the SLCP method as a means of solving economic
equilibrium problems. The best presentation of his work from a theoretical perspective
is in [Mat 87]. Particularly in collaboration with Rutherford, Mathiesen has conducted

extensive empirical investigations into the behavior of SLCP as applied to both partial and
general equilibrium problems. Almost all of the computational results attest to the general
robustness and efficiency of the SLCP method. The most informative discussions of these
experiments are unfortunately in unpublished form, [MR 83] and [Rut 86].

21
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22 4.1 A sequence of linear complementarity problems (SLCP)

SLCP is applied to problem Eq-NLCP as follows. Let an initial linearization point be given
as p0 , which must be in the domain of d(p) but need not be feasible with respect to the
profitability conditions (NLCP2) in Section 3.2. Thereafter, any iteration k + 1 begins with
a first-order Taylor's approximation of d(p) at the point pk:

d(p) ; dk(p) E d(pk ) + Vd(pk)(p - pk) = d(pk) + Vd(pk)p,

where the simplification on the right results from (H1) of Section 2.1. We then define and
solve the linearized subproblem denoted by LCP(pk):

ILCP(pk)

Find a complementary solution of:

(LCP1) -Vd(pk)p + Ay + hv > d(pk) I p _ 0

(LCP2) -ATp > 0 1 y > 0

(LCP3) -hTp -1

(LCP4) p , y > 0

Let ( VYi) solve LCP(pk). If p is sufficiently close to pk, then we have an approximate
complementary solution of Eq-NLCP. If not, we define a new linearization point by:

pk+1 =pk+A(p _pk), where O<A< 1.

Set k = k + 1 and repeat.

As in most iterative algorithms, the choice of step length A is a matter of art. At the least,
A must be chosen so as to ensure that pk+1 remains in the domain of d(p). We will have
only a few more remarks about the issue of step length in the next chapter on convergence.

An important consideration in the definition and execution of SLCP is the feasibility and
solvability of the LCPs encountered. Mathiesen uses the num6raire method of price nor-
malization and Lemke's almost-complementary pivoting method [Lem 68] for solving each
LCP. He resorts to choosing a different num~raire commodity whenever a subproblem is not
solved. As we shall demonstrate in Chapter 6, however, the normalization vector h can be
chosen in such a way as to guarantee that subproblems constructed as above have a feasible
complementary solution which moreover can be successfully computed by Lemke's method.

4.1.1 Basic solutions, uniqueness, and regularity

Since Lemke's method proceeds by examining only basic solutions of an LCP, it is important
to ascertain whether an equilibrium solution can in fact occur at an extreme point (or
vertex) of the linearized contraints. Mathiesen correctly recognized that, in the absence

of a price normalization, the equilibrium conditions do not admit a basic solution of the
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4.1.1 Basic solutions, uniqueness, and regularity 23

inequalities. (We will review this observation below.) In practice Mathiesen avoids the

singularity by deleting the price column and the supply/demand inequality corresponding
to the numiraire commodity. We will show that adding the explicit price normalization

equality (LCP3) and the artificial variable v accomplishes the same purpose. In fact, the
two approaches are equivalent in this respect for h = ei. There is, however, a minimum

rank condition required, at least at an equilibrium price.

Since any equilibrium solution corresponds to a complementary solution of Eq-NLCP, the
only question is whether it can be reduced to a basic complementary solution. That is,
given an equilibrium price vector P, can we construct a basic complementary solution of

LCP(3)? To this end, let I3 be an index set for all positive components of p and also for
the corresponding rows of the matrix A. Let a index all those columns of A such that

P r+.A+ = 0. Accordingly, in any complementary solution, qj = 0 for all j 0 a. We further
partition the set a into sets a + and a0 = a \ a + . This partition can always be constructed

so as to satisfy the property that a + is a maximal linearly independent set of columns such
that there exists a ( +, y satisfying:

AO+ a+9+ = dp+(p)

, Ao_,+, ,,+ > d,_(- )

So+ > 0

a0 =0.

Here, the index set 03+ is given, while the index sets 3i0 and 03- are implicitly defined to
correspond to weakly binding (po = 0) and strictly slack inequalities in the above solution.

We now construct a partitioned matrix which will be the focus of the ensuing discussion.
For brevity we let V = Vd(p).

-Va.+,g+ A6+ + h9 +o A+.o

-(AO+. T-Ao+) T

-hT -h - j MK J
_+ _0

-V.+ A$,,,+ ho -Voo A 0  [MJ MKK,

( T00 -(A00o) T

The abbreviated notation in terms of "M" corresponds to that of Mangasarian [Mang 80],
wherein J indexes binding inequalities with complementary variables that are positive and

K indexes binding inequalities with complementary variables that are zero. Since the price
normalization is an equality and variable v is unconstrained in sign (and therefore necessarily
basic), it is appropriate to include them in set J - even though vi = 0 at an equilibrium
solution.

In building a basis for this solution, the J columns must always be included while the K
columns need not be considered at all. Indeed, a satisfactory and sparser set of basis columns

]1p
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corresponding to the K rows would be the columns for the (degenerate) slack variables of
the K rows, specifically the #0 rows of (LCP1) and the a ° rows of (LCP2). In addition,
nondegenerate slacks are in the basis for all inequalities that are strict. Consequently, the
ability to construct a basic solution turns on the nonsingularity of M,,, We must then
address the conditions under which this is true.

Let M+. denote the leading principal submatrix of M,, obtained by deleting the row
and column containing h,,+. The submatrix M4+ is singular because -= 0 and

(A 0 r)T+,+, = 0 at an equilibrium solution. Also, by virtue of property (Wi) from Sec-

tion 2.1, (Vr++)Tpr + Ap+04 V0+ = 0. Hence, (-TV+ )M++ = 0. Thus, since hT+y,+ = 1,
we can conclude:

M 4 4Z + (hp+) W=0==; 0 +W=0,

that is, that the artificial column is linearly independent of the columns of M4+. Nonsin-
gularity of M, then depends on the rank of Mr . If the rank of M++ is I3+1 + ja - 1
(where I - denotes cardinality), then the null space of M+ is spanned by the single vector

(p, , 0). But since hr+j = 1, we can conclude from this and the preceeding implication
that bordering M++ with the price normalization and artificial column serves to make M,
nonsingular. If M+ has more than one degree of rank deficiency, then naturally we can-
not expect the addition of one row and column to produce a nonsingular matrix. Thus,
the necessary and sufficient condition for existence of a basic equilibrium solution is that
the associated submatrix M++ have rank 10+1 + a+1 - 1. This argument was inspired by a
similar argument of Mas-Colell [MasC 85] for a pure exchange economy.

The above conclusion holds for any normalization such that 0 6 h'9+ _ 0. In particular,
it applies for h = ei, for any i E /3+. By a simple expansion of determinants argument, it
is clear that M., is nonsingular in this case if and only if the submatrix of M++ obtained
by deleting the row and column corresponding to index i is nonsingular. Hence, Math-
iesen's procedure of deleting the column and row corresponding to the num6raire price and
commodity balance is equivalent to adding an explicit price normalization and matching
artificial column based on h = ei, where i is the index of the numdraire commodity.

We are thus left with the reassurance that a solution procedure which examines only basic
solutions can find any equilibrium solution that satisfies the indicated rank condition on
the submatrix M++. Note that this condition depends on both the Jacobian of the demand
functions and the activity analysis matrix.

We can also use the above partitioned matrix to examine a solution for local uniqueness
and regularity. Mangasarian in [Mang 80] derives a collection of necessary/sufficient and
sufficient conditions for local uniqueness of a solution of an LCP. These conditions are in turn
sufficient for local uniqueness of the solution of an NLCP for which the LCP is a linearization
at the solution point. Mangasarian employs the CNLP form of the complementarity problem
and assumes twice-continuous differentiability so as to utilize the second-order sufficient
conditions for optimality. Kyparisis in [Kyp 86] obtains the same results assuming only
once-continuous differentiability by using the theory of generalized equations. Robinson
in [Rob 801 establishes related conditions (and definitions) for the regularity of solutions
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to complementarity problems as important special cases of regular solutions of generalized
equations.

Mangasarian's necessary and sufficient conditions for local uniqueness of a solution of an

LCP solution encompass both the general case and the particular case of M., nonsingu-
lax. The nonsingular case is the most interesting in our context, both because we exam-
ine solution algorithms that find basic solutions and because there is then an immediate
connection to Robinson's conditions for regularity. Both issues turn on the properties
of the Schur complement of M, 1 in the above partitioned matrix, which we denote by

MKK - M MJJ-MJK. A solution is locally unique if and only if z = 0 is the only
solution of the LCP:

find z>0 such that Sz>0 and zTSz=O.

A solution is regular if and only if all of the principal minors of S are positive. Clearly,
regularity then implies local uniqueness.

In the further special case of nondegenerate (strict complementary slack) solutions, we have
K = 0. In this case regularity is equivalent to nonsingularity of M., Such solutions are
what Kehoe [Keh 82] and Mas-Colell [MasC 85] refer to as regular and properly regular
equilibria, respectively. Their focus on the nondegenerate case is necessitated by the exten-
sive use of differential topology and genericity analysis based on arbitrary perturbations of
problem data. There is some reassurance in their findings that regularity is a generic result
in the space of production economies, meaning that almost all economies have only regular
equilibria. Regularity is significant for computational purposes not only in guaranteeing the
existence of basic equilibrium solutions but also in providing conditions for convergence of
solution methods to be discussed in the next chapter.

4.2 A sequence of quadratic programs (SQP)

An important class of methods for solving general nonlinear programs proceeds by solving
a sequence of quadratic programs, derived by linearizing the nonlinear constraints (via Tay-
lor's expansion) and formulating a second-order approximation of the associated Lagrangian
function. A reasonably self-contained discussion of various manifestations of the basic SQP
method can be found in [GMW 81]. Different versions may be characterized by the nature
of the Lagrangian approximation, whether or not the linearized constraints are perturbed
in any way, and by the nature of the merit function and line search employed to promote
convergence from any starting point. Typically, the QP subproblem is expressed in terms
of a search direction relative to the linearization point.

We will not deal with constraint perturbations and defer the convergence issues to later
chapters. With respect to problem Eq-NLP, the SQP process is very similar to applying
SLCP to Eq-NLCP. Specifically, p0 must be given and iteration k + 1 begins by linearizing
d(p) at pk. A second-order approximation of the Lagrangian function must be defined,
noting that for problem Eq-NLP the only source of curvature is the demand functions
d(p) in inequalities (NLPI). We leave this approximation non-specific for the moment and
denote the estimated Hessian matrix by H(pk,,i'), thus indicating its dependence on both

5'.
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the linearization point and an estimate of the Lagrange multipliers, /i. We then define and
solve the linearized subproblem denoted by Qp(pk):

minimize (p-pkFH(pk, pk)(p-pk) + V
subject to

(QP1) -Vd(pk)p + Ay + hv >_ d(pk) & ; > 0

(QP2) AT > 0 0 0

(QP3) hTp = - 1

(QP4) p , y > 0

Let (p, 9, V) solve QP(pk*), wiith (P, , ii) the associated Lagrange multipliers. If p and 7) are

sufficiently close to pk and 1k, then we have an approximate local minimum for Eq-NLP. If
not, we define a new linearization point by:

pk+1 =p k+A(p-pk), where 0< A< 1.

Typically, the Lagrange multiplier estimate is updated by ip'+l = i3. Set k = k + 1, and
repeat. A

Note that problem QP(pk) has the same inequalities as LCP(pk), so it inherits the same
properties of feasibility and non-singularity as discussed above. In many practical imple-
mentations, the Hessian estimate H(pk, # 1) is constructed so as to be positive semidefinite.
If this is not enforced, as in the next subsection, it is desirable at least that the subproblemr
be constructed so that the objective function is bounded below on the feasible region.

4.3 SLCP implements SQP

In the original SQP method of Wilson [Wil 63], the QP objective function is derived from
the second-order Taylor's expansion of the Lagrangian function at the linearization point
p'. The Lagrangian is constructed from the exact Hessians of the objective and constraint

functions using the QP multipliers Pjk as Lagrange multiplier estimates. The method was
intended for use on convex problems, for which the resulting QPs would also be convex.

Even in the absence of convexity, we can specialize Wilson's formulation to problem Eq-N LP.
yielding the following objective function for QP(pk):

PkT fkV(,()] P)+ 1!.
minimize 1(p ( 7))T 1)'V2di(pk (I -

If by design or chance pk pk, the Hessians can be eliminated using (W2) of Section 2.1
to produce:

minimize -(p _ pk)T [V(.(Ipk) + VTd(pk)] (p _ Pk) + v.

minimizeS- ~*'~~% S~
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We can then apply (111) and (W1) from Section 2.1 to obtain:

minimize _ pT [Vd(pk) + vTd(pk)] p - pTd(pk) + v,

which in non-symmetric form is:

minimize - pTVd(pk)p - pTd(pk) + v.

The resulting QP is thus precisely the composite quadratic program equivalent to LCP(pk).

The objective function is a statement of the complementarity conditions and consequently is
bounded below by zero on the feasible region. Moreover, the global minima of the composite
QP are equivalent to the complementary solutions of the LCP.

We can now provide an SQP interpretation of SLCP iterations. Suppose that at iteration 1
we take P5 = p0 . (Given the underlying complementarity nature of the equilibrium problem,
this would seem to be a better estimate than most.) With this initialization, QP(p 0 ) and
LCP(p ° ) are identical problems. Given this equivalence, a complementary solution (P, y, f)
of LCP(p0 ) is indeed a global minimizer of QP(p0 ). Hence, if a unit step length is applied
(as in Wilson's algorithm), for the next iteration we can take pl 1  = . So again, QP(pl)
and LCP(p 1 ) are identical. By the obvious induction, this equivalence continues so long as
a unit step length is taken. Thus, SLCP (with unit step length) is precisely implementing
Wilson's SQP method on a nonconvex problem. The saving feature is that solving the
subproblem as a complementarity problem guarantees finding a global minimum for the
(composite) QP.

If a unit step length is not taken, the equivalence can be maintained by applying the
same update formulas to the primal iterates pk and the Lagrange multipliers jjk. Such
simultaneous updating is a feature of a different version of SQP implemented by Gill,
Murray, Saunders and Wright [GMSW 86].

4.3.1 A more general equivalence result

We derived the equivalence result just discussed using the special properties of the demand
fuinctions in a general equilibrium problem. As it turns out, however, this result is actually
a special case of an equivalence applying to any NLCP. Our discovery of the more general
result w'-s kindled by Mangasarian's utilization in [NIang SO] of the second-order sufficient
optinality conditions for the equivalent CNLP statement of the general NLCP (defined in
Section 3.1).

Consider applying Wilson's SQP method to problem CNLP. Let Z be a linearization point
leading to the following linearized constraints:

z > 0 and Vf(.)z > -f(z) + Vf(z)z.

The Q1P objective function is formed from the gradient of lie CNLI1 objective and aii
estiniated Hlessian of the Lagrangian function based on estimated Lagrange iiiltipliers.

C-*r h* *J, ~ ~%- ~ - ' ~ W ~ C
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The gradient of the CNLP objective is:

[f (i + f(zz

The estimated Hessian of the Lagrangian is:

vf() + Vf(5) + DZ- (AP - )
i

Again, if by design or chance i = z, the summation term drops from the estimated Hessian.
We can then compose and simplify the QP objective function. The contribution from the
gradient term is:

[() + v:(.)](z - :(_) + Vf (:)z + constant.

[he contribution from the Hessian term is:

(Z- .)T VT - zTVf()(z - 2) - rTVf(_)z + constant.

Collecting non-constant terms, we are left with

minimize zT[Vf(i)z + f(2) -Vf(i)Z].

Relating this to the linearized constraints, we see once again the composite quadratic pro-
gram corresponding to the LCP derived from linearizing the NLCP at 2. The inductive
argument given above then applies to the general case as well.

XVe summarize the equivalence result just obtained. Applying the SLCP method (with
unit steps) to the general NLCP problem precisely implements Wilson's SQP method on
the equivalent CNLP problem. Applying Wilson's SQP method to the CNLP form will
produce the same iterates as SLCP (with unit steps) applied to the NLCP provided that
global minima are found for indefinite QP subproblems. If a unit step cannot be taken, the
equivalence is maintained simply by updating the multiplier estimates in the same manner
as the primal iterates.

To avoid potential confusion, it is perhaps important to distinguish this result from a
seemingly similar observation of Josephy in [Jo-N 79], which is summarized in Robinson's
survey [Rob 82]. His observation concerns applying the generalized equation form of New-
ton's method to the special NLCP that represents the optimality conditions for a general
NLP. lie demonstrates that the method produces a sequence of (bisymmetric) LCPs, each
of which represents the optimality conditions for a corresponding member of the sequence
of QPs that is generated by applying Wilson's SQP method to the given NLP. This is a
result which we will use in the next chapter, but it is altogether different from the equiva-
lence result we obtained above, which pertains to a general NLCP and the special CNLP
constructed to be equivalent to it.

.1
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4.4 A sequence of linear programs (SLP)

Perhaps the earliest practical method for solving sizeable nonlinear programs is based on a
sequence of linear programs. Origination of the method is attributed to Griffith and Stewart
[GS 61], and a recent robust implementation is reported in [ZKL 85]. The LPs are defined
by using first-order Taylor's expansions of the objective and constraint functions. Additional
bounds are usually added to the subproblems so as to prevent large deviations from the
linearization point. These bounds create a so-called trust region over which the linearization
is presumed to be an acceptably accurate approximation of the nonlinear functions. The
bounds further serve to move the subproblem solutions away from basic solutions of the
linearized constraints. For the general NLP, we would not expect an optimal solution to
be such a basic solution. For a CNLP problem like Eq-NLP, however, we know that basic
optimal (complementary) solutions do in fact exist (given the rank condition discujssed in

Section 4.1.1). In such a case, we can reasonably consider defining LP subproblems without
any additional bounds (and worry about convergence later).

For application to problem Eq-NLP, we define the following subproblem at linearization
point pk:

LP(pk)

minimize V
subject to

(LP1) -Vd(pk)p + Ay + hv > d(pk) _. p> 0

(LP2) ATp > 0 3- > 0'

(LP3) -hTp = 1 ±

(LP4) p, y > 0

LP(pk) is identical to QP(pk*) except for the use of a linear objective function. In this sense,
SLP may be considered a special case of SQP that uses a vacuous (and therefore positive
semidefinite) approximation of the Hessian of the Lagrangian. The iterative process is also
the same.

If h is chosen (as described in Chapter 6) to guarantee the feasibility and solvability of
any linearized subproblem, then both the primal and dual of LP(pk) must be feasible.

Consequently, by weak duality, an optimal solution must exist.

If P is an equilibrium price vector, subproblem LP(p) is the linear program alluded to
in Observation 2 of Section 3.3.1 for which the complementary slackness conditions arv
equivalent to the optimality conditions for problem Eq-NLP.
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4.5 A projected (augmented) Lagrangian method

The projected Lagrangian algorithm has proved to be an effective means for solving large,
mostly linear optimization problems. It is thus a natural candidate for solving problem
Eq-NLP. The method was originated by Robinson [Rob 72] and Rosen and Kreuser [RK 72],
and has been implemented in the optimization package MINOS by Murtagh and Saunders
[MS 82]. This algorithm also solves a sequence of linearly constrained subproblems, based on
Taylor's expansions of the nonlinear functions. (As these constraints are identical to those
of the previous three methods, we will not delineate them again here.) The distinctive
feature of the projected Lagrangian method is the objective function, which incorporates
the original problem objective (as is) and a Lagrangian term based on an estimate of the
optimal multipliers and the difference between the linearized and actual constraint function
values. As implemented in MINOS, the objective optionally includes an additional quadratic
penalty term (also based on the linearization errors) designed to stabilize the iterative
process and promote convergence from any starting point. This addition corresponds to the
quadratic term of an augmented Lagrangian merit or penalty function.

As applied to Eq-NLP, the objective takes the following form at iteration k + 1. Let p be a
penalty parameter, lik be an estimate of the optimal Lagrange multipliers for the nonlinear
inequalities (NLP1), and recall dk(p) as a notation for the first-order Taylor's expansion of
d(p) at pk. The objective is then:

minimize v - (,a k)T [dk (P) -d(p)] + 1 p 11dk (p) -d(p) 2

Given a solution of the subproblem, pk and j k are updated as for SQP with the step length
determined by a linesearch procedure.

Typically, the multiplier estimate yk is taken to be 1 k, the multipliers for the linearized con-
straints in the subproblem solution. We have found that two deviations from this procedure
yield interesting connections to the solution methods previously described. In both cases we
must take p = 0, which is generally safe for a well-behaved problem. If Uk is always taken
to be zero, the resulting subproblem is precisely SLP(pk). This is a general result for any
NLP with a linear objective function. As an alternative, intuition suggests the possibility
of using the prior knowledge that the prices, p, solved for in the subproblem are also good
estimates of the optimal multipliers. If we then replace the constant ik with the variable
p, the now "endogenous" Lagrangian term transforms the objective function to:

v T - d (p)J = v pT )0 = - -p v(pk)pp -

where again we apply Walras' law, (D2) of Section 2.1. The rightmost expression may be
recognized as the non-symmetric form of the objective function for Wilson's SQP(pk), which
is in turn the complementarity conditions for SLCP(pk).

4.6 Other linearization methods

Another diverse class of solution methods for general nonlinear complementarity )roblems
uses linearizations other than first-order Taylor's expansions. For concreteness, denote by
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B k a matrix depending on the iterate pk such that:

d(p) ; d(pk) + Bk(p - pk).

By substituting this linearization into (LCP1) above, an LCP for iteration k + 1 is ob-
tained, and an iterative procedure otherwise identical to SLCP can be pursued. This class
of methods includes the quasi-Newton method for generalized equations as studied by Jose-
phy [Jo-Q 79] and all of the linear approximation methods for complementarity problems
surveyed by Pang and Chan [PC 82].

There are two possible reasons in general for considering an alternative linearization scheme.
The first is to avoid explicit computation of the Jacobian matrix if the derivatives are
expensive to evaluate. In this case, Bk must be substantially easier to calculate than
Vd(pk). In a CGE model, particularly one with a sizeable linear production component,
it is not in general likely that the evaluation of a Jacobian once each iteration will loom
large relative to the computational effort involved in processing the linearized subproblem.

There are always exceptions, of course, but we will not consider situations in which expensive
derivatives effectively rule out the application of first-order methods.

The other reason for using an alternative linearization is choosing a form of Bk which pro-
duces a subproblem that is easier to solve than LCP(pk). This is a much more relevant issue
in the context of problem Eq-NLCP, for which Vd(pk) is singular and has no demonstrably
desirable computational properties. While each subproblem can be successfully processed
by Lenike's method regardless of the linearization employed (see Chapter 6), other lin-
earizations yield subproblems amenable to solution by other, possibly faster, methods. For
instance, using B Vd(pk) - VTd( pk) has the interesting property that the linearization
satisfies WqIras' law, (D2) of Section 2.1. The skew-symmetry further implies that each
LCP subproblem, expressed as its associated composite quadratic program, is actually a
linear program because the Hessian vanishes. Using a general positive semidefinite Bk yields
a suiproblein whose composite QP can be effectively solved by a, convex QP code as well
as by any number of iterative (non-pivoting) methods. Finally, using a. symmetric positive
semnidefinite Bk )roduces a bisymmetric LCP subproblem that comprises the optimality
conditions for a convex QP in the price space alone. This lower dimensional QP can in
ge1neral be solved much faster than LCP()pk).

As is to be expected. the advantages of easier subproblenis have to be weighed against
inferior convergence l)roportie.s of the overall process. These convergence issues are the
siu hject of thoe next chapter.

%%
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5

CONVERGENCE PROPERTIES
OF SOLUTION METHODS

In this chapter we present a number of observations about the convergence properties of
the methods discussed in the previous chapter for solving problems Eq-NLCP and Eq-NLP.
Three related but separate convergence issues are relevant. All involve some notion of a
target point. In the case of a complementarity problem, target points are unambiguously
the complementary solutions. In an optimization context, target points are generally taken
(for purposes of convergence analysis) to be local optimizers, which in the absence of (some
generalization of) convexity need not be global optimizers.

The first issue is generally referred to as local convergence. The question here is whether
there is a neighborhood around a target point such that, if the iterates generated by al
algorithm enter that neighborhood, all subsequent iterates remain in the neighborhood and
moreover converge to the target point. An important associated issue is the rate at which
the iterates converge to the target point once in this neighborhood. The next issee is widely
referred to as global convergence. The question is whether, from any starting point, the
iterates generated by the algorithm eventually converge to some target point. Herein arises
an unfortunate ambiguity in the established terminology, since global convergence does not
mean convergence to a global optimum. Locating a global optimum is precisely our third
convergence issue, which is relevant only in applying optimization methods to Eq-NLIP. I1
is important that converging iterates in fact approach a global minimum, since it is global
minima that correspond to complementary (equilibrium) solutions.

5.1 Local convergence

In light of the equivalence between SLCP and Wilson's SQP method in an equilib'ium con-
text, we provide below an analysis of the relationship between the known local convergence
properties of the two methods. For comIpleteness, we will also briefly survey known results
for the other sohltion methods we have identified in Chapter .1.

5.1.1 SLCP and Wilson's SQP method

Recall the equivalence discussed ii Section 1.3 between SLCP and NVilson's SQI met hod as
al)plied to th, onlinear complementarity problem and its CN1, I nonlinear prograinil g
con uterpart. ht iglit of this equivalence, it seems sensiblo to invoke the mosl powerfil of li('
('011vergenco resuilts available for the two metlods. Using somie prec iiusors of tIe t leorv of
geieralized equatiolis, Robiinson ill [Rob 7,1] establishes the local <ia(Iratic comv-ergeice o4
;I rail i ofoptimization lethiods that includes \Vilson 's SQP) algoril hIn. Iik result eiio'
Hire conditions for a local minin izer to possess a doiiiai i of alt ractioll:

I. second-order sufficient optimality conditions

33
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2. linear independence of the gradients of the binding constraints

(including simple nonnegativity constraints)
3. strict complementary slackness.

These are strong conditions, but little exists to this day in the way of convergence results
for optimization methods without similar conditions.

Josephy in [Jo-N 79) establishes the local quadratic convergence of Newton's method for
generalized equations. In particular, any regular solution posseses a domain of attraction.
Robinson develops conditions for the regularity of a solution of an NLCP in [Rob 80].
(These conditions were delineated in Section 4.1.1.) He also demonstrates regularity of a
solution of an NLP (without strict complementarity) under a strengthening of the second-
order sufficiency condition and linear independence of the binding constraint gradients. In
later work [Rob 82], he observes that these latter conditions are sufficient for local quadratic
convergence of Wilson's method. This follows from Josephy's demonstration of the equiv-
alence between Wilson's method applied to a given NLP and Newton's method applied to
the NLCP formed from the optimality conditions for the NLP. (Recall our discussion in
Section 4.3 that this is not the same equivalence as the one we develop.)

Unfortunately, this strengthening of the convergence result for Wilson's method on general
problems is of no help in the context of applying Wilson's method to the CNLP form of
a given NLCP (these forms were defined in Section 3.1). This is because, as somewhat
casually observed by Kyparisis in [Kyp 86], the linear independence condition cannot be
satisfied in the absence of strict complementarity (or nondegeneracy in the NLCP context).
By way of a quick demonstration, we can use the general form of an NLCP since the result
is general. Define the usual index sets for a complementary point z:

J = {i: fj(z) = 0,zi > 0}, K = {i: fj(z) = O,zi = 0}, L = {i: fj(z) > 0,zi = 0}.

Also, let M = Vf(z) and let I be a comformably dimensioned identity matrix. The matrix
of binding constraints including the nonnegativity conditions is:

-' MK MJL

ILL

Clearly, the rows of this matrix are linearly independent if and only if the northwest sub-
matrix has full row rank. But this requires that M., be nonsingular and that A' = 0.

In light of this situation, the equivalence we establish between SLCP and Wilson's SQP
method is of no particular help in investigating local convergence. In our complementarity
context, the convergence conditions for Wilson's method turn out to be a special case of
the regularity condition needed to establish the local quadratic convergence of Newton's
method. Recall Robinson's result (discussed in Section 4.1.1) that a solution of an NLCP
is regular if and only if Al, is nonsingular and either It' 0 or all l)rincipal minors of

• -
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the Schur complement, MKK - MKjM;.MJK, are positive. Of course, any regular solution
must be locally unique, so any regular solution of an NLCP with K = 0 must satisfy the
three strong conditions given above for the equivalent CNLP problem.

An interesting by-product of this otherwise disappointing result is that it identifies a class of
problems for which Wilson's method will exhibit local quadratic convergence under weaker
conditions than linear independence and strict complementarity. Thus, Robinson's sufficient
conditions for Wilson's method cannot be necessary conditions as well.

Returning to our central theme, the useable results from these observations are that we can
indeed expect local quadratic convergence from SLCP (Wilson's SQP) when the model has
regular equilibria and the global path of the algorithm brings the iterates into some domain
of attraction.

5.1.2 Other optimization methods

Practical implementations of SQP typically combine a positive definite approximation of the
Hessian of the Lagrangian with a merit function of some kind to guage descent. The issue
of local convergence " en becomes inseparable from the mechanism used to promote global
convergence. Local superlinear convergence can be achieved if the Hessian approximation
approaches the true Hessian in a certain way and the line search permits unit steps in
the neighborhood of a local minimum. The precise conditions are unimportant for present
purposes, but a summary with references can be found in [GMSW 87].

The SLP method is in essence choosing a steepest-descent search direction (subject to some
trust region bounds) with respect to an absolute value (or f4) penalty function representa-
tion of the given NLP. Consequently, we cannot expect better than linear convergence on
a general problem. If the problem at hand has a solution at a vertex of the linearized con-
straints, however, it is an intuitive result that, once the correct basis has been determined,
the method is actually performing Newton's method on the square system of basic variables
and binding constraints. We could then expect quadratic convergence in the neighborhood
of a regular solution. Zhang, Kim and Lasdon assert this result (without proof) in [ZKL 85].

The projected Lagrangian method was shown by Robinson [Rob 74] to be locally quadrat-
ically convergent under the same conditions as given above for Wilson's SQP method. The
practical implementation in MINOS inherits the same property, since the penalty parameter
p is decreased to zero as a local minimum is approached.

5.1.3 Other linearization methods

Pang and Chan in [PC 82] unify an extensive collection of convergence results for lin-
ear approximation methods for solving variational inequalities, organized around the basic
themes of norm-contraction, vector-contraction, and monotonicity. Further elaboration on
these results is not justified in our context, since the general equilibrium problem does not
demonstrably satisfy any of the known conditions for local (or global) convergence.
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Josephy in [Jo-Q 79] extends the known results for solving nonlinear equations by quasi-
Newton methods to the case of generalized equations. In particular he shows that, under
conditions satisfied by the usual quasi-Newton update formulas, the sequence of iterates is
linearly convergent in the neighborhood of a regular solution. Of incidental interest is the
condition for superlinear convergence of a (known-to-be) linearly convergent sequence of
quasi-Newton iterates. In our context, this specializes to:

lir JU[Bk - Vd(pk)](pk -- pk-,) 0,
k oo I1pk - pkl I 1

where Bk is the approximation matrix at iteration k.

5.2 Global convergence

We first briefly survey the known global convergence properties of the solution methods
we have identified. We then develop some new machinery for analyzing convergence in the
context of an equilibrium or complementarity problem.

In the absence of one of the contraction or monotonicity properties discussed by Pang and
Chan, very little is known about the global convergence properties of Newton, quasi-Newton,
or other linearization methods for solving the NLCP. The same can be said about Wilson's
SQP method in the absence of convexity. As an empirical matter, however, Mathiesen's
computational experience has shown SLCP to be remarkably robust.

Global convergence has been proved for well-designed SQP methods, given the usual as-
sumptions about a strict local minimizer with strict complementarity and linear indepen-
dence of the gradients of the binding constraints. (Recall that linear independence and 0
strict complementarity are inseparable for a problem of type CNLP.) "Globalization" has--1
been based on line-search procedures relative to an absolute value (t4) merit function or
to an augmented Lagrangian merit function. In either case, the convergence argument de-
pends critically on the positive definiteness of the matrix used to represent the Hessian of
the Lagrangian. Again see [GMSW 87] for a summary of these results and references to the
detailed demonstrations.

Zhang, Kim and Lasdon in [ZKL 85] demonstrate the global convergence of their SLP
method by use of an 11 exact penalty function combined with trust region bounds. Since SLP
is a special case of SQP with vacuous Hessian, it is intuitive to think of the tightening of trust
region bounds as a substitute (in the convergence argument) for positive definiteness of the
estimated Hessian. How best to determine satisfactory penalty weights is still unresolved. %

Despite the close connection between the objective function used in MINOS for the linearized
subproblems and the augmented Lagrangian merit function used in some SQP procedures,
there has yet to be a rigorous theoretical demonstration of the global convergence of the
algorithm. The method has strong intuitive appeal, however, and a wide range of successful
applications to nonlinear problems has been reported, both in the literature and informally.

10
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5.2.1 A differentiable exact penalty function (Eq-DEPF)

In the course of examining the tx and augmented Lagrangian penalty functions (particularly
with respect to their use as merit functions for global convergence analysis), we discovered
a potentially fruitful specialization of the approach to problem Eq-NLP. This specialization
provides, perhaps for the first time, an unambiguous means of evaluating the progress of a
sequential method towards an equilibrium solution. While both penalty functions specialize
in an identical fashion, we prefer to deal with the differentiable augmented Lagrangian
function.

The specialization begins by replacing the d(p) term in inequality (NLP1) of Section 3.3
with a proxy variable x (which is not constrained in sign). Instead of adding a constraint,
x = d(p), we add to the previously linear objective function a Lagrangian term and a
quadratic penalty term, i.e.,

-1[x - d(p)] + p I 1k- d(p)II •

In the typical case, p would be an iteratively updated estimate of the Lagrange multipliers
for the omitted constraint, x = d(p). Instead, as we illustrated in Section 4.5, we can use
our prior knowledge of the desired complementarity relationships and replace the updated
constant p with the variable p. The result is a linearly constrained problem which we will
show to be equivalent to Eq-NLP (and thus to Eq-NLCP as well).

Eq-DEPF]

minimize -px + +pJx-d(p)IJ + v

subject to
(DEPF1) -x + Ay + hv > 0 ± P 0-

(DEPF2) -ATp > 0 _L 9 0

(DEPF3) -hTp =-1 ±_

(DEPF4) p , y > 0

Observe first that v- pTx > 0 for any feasible solution. By the usual device, multiply
through inequalities (DEPF1) by p > 0 and (DEPF2) by y >_ 0. Add the resulting two

inequalities and v-p x > 0 follows. Since the penalty term is nonnegative, we can conclude
that the objective function is bounded below by zero on the feasible region.

Equivalence between Eq-DEPF and Eq-NLP is then easily established. Given any global
minimum solution of Eq-NLP (i.e., (p, V, i) feasible with f) = 0), we immediately construct
a global minimum of Eq-DEPF as (p,.,,) with x = d(p). Note that the penalty term
vanishes and pTx = prd(p) = 0 by virtue of Walras' law, (D2) of Section 2.1. We thus know
that the globally minimal objective value for Eq-DEPF is in fact zero. Given this, we can
argue the converse. Any global minimum (p,x, 9, V) for Eq-DEPF must have x = d(p) or

4. ,



38 5.2 Global convergence

else the penalty term would be positive. In this case, we again have p=T pTd(p) = 0 by
virtue of Walras' law. It then follows that V = 0 since the global minimum objective value is
zero. We then immediately have (p, 9, 0) feasible with V = 0 as a global minimum solution
for Eq-NLP.

Note that the above equivalence holds for any value of p > 0. This is because v - Tx > 0
on the feasible region of Eq-DEPF and zero is in fact an attainable global minimum. This
invariance to p is in happy contrast to the usual situation with penalty functions, in which
the correspondence between optimal solutions of the penalty problem and optimal solutions
of the original constrained problem obtains only for sufficiently large values of the penalty
parameter. We are thus free in problem Eq-DEPF to vary the penalty parameter in any
way conducive to an analysis of global convergence.

Any number of further transformations of problem Eq-DEPF are possible that still maintain
the equivalence to problem Eq-NLP. Other types of penalty terms could be used, differ-
entiable or otherwise. Since feasibility of subproblems is not an issue, variable v could be
dispensed with altogether. Having omitted v, the term -pTx could be dropped from the
objective function, leaving only the penalty term. (This clearly highlights the underlying
character of the equilibrium problem as a feasibility problem.) The disadvantage of this
transformation from a computational perspective is that the resulting variant of Eq-DEPF
would have zero Lagrange multipliers at the global minimum. In contrast, a global mini-
mum of Eq-DEPF as stated has the desirable property that the "primal" variables are also
complementary Lagrange multipliers. Leaving v in Eq-DEPF also allows a more direct and
convenient correspondence to the solutions of linearized subproblems in which the presence
of v is used to guarantee the existence of feasible and complementary solutions. (We discuss
this further in Chapter 6.)

The significance of problem Eq-DEPF is twofold. First, the value of the objective function
can be used as a merit function for judging the progress of any sequential method that
produces a (p,x,y,v) which is feasible for Eq-DEPF. All of the solution methods that
we discuss indeed have this property; x is directly obtained as the value of the linearized
demand function in the solution of the subproblem. Second, it may be viable to apply
an optimization method directly to problem Eq-DEPF instead of problem Eq-NLP. Both
of these uses of Eq-DEPF will be discussed in turn below, but first a brief aside on the
immediate generalization of this penalty function formulation to problem CNLP.

A more general result

Similar to what we discovered in Section 4.3, a more general result lurks behind the de-
velopments for problems Eq-NLCP and Eq-NLP. A differentiable exact penalty function
representation is also readily available for the equivalent CNLP form of the general nonlin- 4

ear complementarity problem (see Section 3.1). It has the following simple form:

(DEPF) minimize wTz + 1PJw- f(z)I' subject to w > 0, z > 0.

Again, we have a linearly constrained problem with an objective function that is bounded
below by zero on the feasible region (the nonnegative orthant in this case). Assuming

per Y' e r or r
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that the original NLCP has a solution, any such solution is a global minimum of DEPF and
conversely. As in the case of Eq-DEPF, any linear parts of f(z) can optionally be maintained

as general linear constraints as opposed to being included in the penalty term.

Analogous to the situation with the specific Eq-DEPF problem, formulation DEPF may

prove to have independent computational potential as well as usefulness in evaluating the
convergence of any sequential method for solving an NLCP.

5.2.2 Stationary points of Eq-DEPF

Problem Eq-DEPF inherits the nonconvexity of problem Eq-NLP, but it also inherits the

interesting properties of the first-order optimality conditions which suggest that nonoptimal

stationary points may be rare or avoidable. These conditions are thus worth delineating
here. Let (p, , ), ) be a Karush-Kuhn-Tucker point of Eq-DEPF with associated Lagrange
multipliers (3, , )). The primal conditions are simply (DEPF1)-(DEPF4) evaluated at
(p, 2, , t). The multiplier conditions are as follows:

(DMx) p[x-d()] - p + 0 = 1 x

(DMO) -pvTd(f)[2-d(p)] - i + A + ht > 0 _! p> 0

(DM1) -[±-d(p)] + vTd(P)p + A9 + h 3 > 0 1 p 0

(DM2) -ATi > 0 _L Y 0

(DM3) = -1 1 )

(DM4) p, y > 0

Here, we have obtained (DM1) from the "original" condition (DM0) by applying the iden-
tity (DMx). Conditions (DM1)-(DM4) then differ from the Eq-NLP multiplier conditions
(M1)-(M4) (see Section 3.3.1) only in the presence of the term [±-d(fi)]. Equation (DMx)
also adds a direct connection between p and P that is not present in the KKT conditions
for problem Eq-NLP.

We can now detail a number of interesting observations about these conditions.

Observation 1. By the usual manipulations of the complementarity conditions, we derive
that V = pT2 and = X..

Observation 2. If i = d(p), then p = p by (DMx). In turn we must have ib = 0 by
Walras' law, property (D2) of Section 2.1. In short, we have an equilibrium solution.

Observation 3. Since v - >x >_ 0 for any feasible solution of Eq-DEPF, we can use
Observation 1 and (DMx) to conclude:

0 < v pT- = _ ,v= (0-b p)T2 = _p[. -d(p)]T±.
Id.
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If i X d(P), then fIt-d()I' > 0 requires:

p[- d(z)]Td(P) < 0 (P - }Td(p) < 0 * Td(p) > 0,

where the first implication follows from (DMx) and the second from Walras' law. In Ob-
servation 4 of Section 3.3.1, we obtained the same conclusion for a nonoptimal stationary
point of Eq-NLP.

Observation 4. Given the price normalizations (DEPF3) and (DM3), equation (DMx)
implies that hT[t-d(p)] = 0. Since the normalization bounds individual prices as well, it
also follows that phiI, - d <()l < 1. Thus, if h > 0 the deviations i - d(p) obtained at a
KKT point of Eq-DEPF can be made arbitrarily small by increasing p. Intuitively, it is hard
to believe that a non-contrived problem could have such near-equilibrium stationary points
sufficiently isolated from true equilibria that a sequence of iterates would be attracted to a
nonoptimal point rather than to an equilibrium point.

We will have further use for some of these conditions and observations at the end of this
chapter.

5.2.3 Judging descent using Eq-DEPF

For brevity, let 4)(p,x,v) denote the objective function of Eq-DEPF. We will need its
gradient:

V+(pkXk vk) = [- _ pVTd(pk Xk-d(pk)J , k+p[Xk-d(pk)] , jT.

Recall that the general sequential procedure for all the methods we discuss begins at iter-
ation k + 1 by linearizing the demand functions d(p) at the point pk. It will help to have
two shorthand notations for the possible linearizations:

dk(p) d(pk) + Vd(pk)(p pk) = d(pk)+ Vd(pk)p

bk(p) d(pk) + B(p_ pk).

Note that bk(p) includes the Taylor's expansion dk(p) as a special case. We will use the non-
specific bk(p) when an expression or remark applies equally well to any linearization, and
will explicitly call notice to any reference that expressly excludes the Taylor's expansion.

We will also use SP(pk) to denote the subproblem defined at iteration k + 1 when it is not
important to distinguish between specific methods.

If (p, ,if) solves SP(pk), we take i = bk(p) and immediately obtain a feasible solution of
Eq-DEPF. Its objective value can be readily compared to those of previous iterations. If
the solution obtained for SP(pk) is a complementary solution, then y - FTbk(p) = 0, since
this expression is precisely the complementarity conditions for the subproblem. In this
case, *(p,±, V) = 1p I1i- d()ll'. The interesting implication here is that, in comparing
two successive iterates of the SLCP procedure (for instance), all that really matters is
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the accuracy of the linear approximation to the demand functions. Counter to prevailing
intuition, the combinatorial aspects of identifying basic production activities and binding
inequality constraints are important only insofar as they affect the prices at which the
linearized demand functions are evaluated.

We can also use the subproblem solution to determine a search direction, i.e., (ip - ti

xk, 9_ yf, _ vk). This direction is always locally feasible and will furthermore be a descent
direction relative to Eq-DEPF if:

VIP(pk X, Vk)(p - ,jXk,i0-vk) < o.

Then, in principle at least, a line search could be performed with respect to 4)(p, x, v) and
an appropriate step length chosen (0 < A < 1). Note that xk+ - bk(pk+1) only if A = 1.

We can now examine the search direction for descent.

41' = V(pkXk,vk)(ppk, .- xk,V-vk) - (upon some reordering)

(i kv)_-(pk)T(.Xk)_-(XkT(p~pk)_ k p~kdpk)]T {-2 + Xk + Vd(pk)(p~pk)}

(f (p'k T;- + (Vk_ T~k) - V (kTk

-p [Xk - d(pk)]{ [Xk - d(pk)] - -dk(p)]}

Here, the transformation of the first three terms is by reordering and by adding and sub-
tracting vk. The transformation of the sub-term in braces is by adding and subtracting d(pk)
and then substituting in the shorthand d k(p). Note that we will use )' as an abbreviation
for this descent formula.

Since both (pk,±,9, i) and (p,xk,yk,vk) are feasible solutions for Eq-DEPF, it follows that
the first two terms of )' are nonnegative. Similarly, the third term is nonpositive. If
x k = bk-(pk) (that is a unit step was taken at the previous iteration) and a complemen-
tary solution was obtained to subproblem SP(pk-l), then we can conclude that the third
term vanishes because (as mentioned above) it is the statement of the complementarity
conditions for SP(pk-1). Other than this, we are unable to state anything definitive about
the magnitudes of these first three terms.

The fourth term indicates the leverage that can be exercised by the choice of the penalty
parameter p. For the four classes of methods that linearize by means of the Taylor's ex-

pansion, i = dk(p). In this case the fourth term reduces to -p 1xk - d(pk ) 2
. Clearly, this

quantity is strictly negative so long as the iterations have not converged. So the search
direction obtained by SP(pk) can be considered a descent direction with respect to any
manifestation of Eq-DEPF that has a sufficiently large value of p. This result depends only
on the use of Taylor's expansions; the objective function or complementarity condition for
the subproblem does not matter. The nature of the solution obtained by the subproblem
affects only the magnitudes of the first three terms, the sum of which conditions how large
p must be in order to make )' negative.
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Unfortunately, this somewhat encouraging result does not necessarily apply for lineariza-
tions other than the Taylor's expansion. In this case we have:

- dk(p) = bkQ3) - dk(p) [Bkvd(pk)] (P p).

(The expression on the right may be recognized as the vector in the numerator of the limit
condition for establishing superlinear convergence of quasi-Newton iterates.) The influence
of the deviation t - dk(p) on the sign of the fourth term of V9 is ambiguous. Should the
fourth term be positive, it may or may not be possible to make p small enough to obtain a
local descent. In particular, this will not be possible if the third term vanishes, as indeed
it will if a unit step was taken on the previous iteration. (Recall that the non-Taylor
linearization methods we discuss all obtain complementary solutions of the subproblems.)

These last two results establish an important connection between local and global conver-
gence conditions. They also deliver a rather serious second blow to the prospects of using
other linearizations on a general equilibrium problem. The use of Taylor's expansions (and
the corresponding relationship to Newton's method) is central to the local convergence ar-
guments for SQP methods, the projected Lagrangian method, and SLP (given a vertex
solution). Their use allows also for the superlinear and quadratic local convergence rates
of these methods. We now see also that use of Taylor's expansions means that any search
direction obtained can be interpreted as a descent direction in Eq-DEPF for large enough
values of p. So their use is aJso conducive to global convergence of the iterates. In sharp
contrast, the use of othei linearizations typically dooms local convergence to a linear rate
given that the iterates converge at all. At the same time departures from Taylor's expan-
sions endanger the assumption of convergence by producing search directions that could in
fact be uphill. It is further interesting in this respect that the condition for superlinear local
convergence of quasi-Newton iterates is mutually reinforcing with the condition promoting

global convergence in the sense that "small" values of [Bk - Vd(pk)] (-pk) are more likely

to produce a negative fourth term in 4V. ,p'p

We have been careful not to assert that any of the above proves the global convergence of
methods using Taylor's expansions. It merely provides a partial theoretical explanation for
the empirical record, particularly as regards SLCP. Two issues continue to elude resolution:
the boundedness of p and the choice of step length.

Boundedness of the values of p required to indicate descent is not strictly necessary for
global convergence. These values can grow indefinitely provided a number of other stringent
conditions are met, including for example:

<' , -y V$(pk,xk, vk)J 1j(jp kJ _xk,i_ vk)JJ

where 7 > 0. In the literature on SQP and SLP, verification that the iterates satisfy such
conditions is critically dependent on either thc usc of positive definite estimated Hessians
or sufficiently small trust regions. We have not been able to demonstrate that the special

properties of an equilibrium problem in some way obviate the necessity of such mechanisms.

Given a downhill search direction, it also remains unclear whether a step length chosen
by any means simpler than a line search would necessarily yield a net descent. We are

l-
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particularly concerned here about the unit steps taken whenever possible by SLCP (or the
other linearization methods) and the deviations from this if the unit step leads outside the
domain of d(p).

One final, perhaps obvious, remark should be made. To the extent that the merit functions
routinely employed in optimization algorithms are good approximations of the exact merit
function available from Eq-DEPF, it is reasonable to expect that descent directions and step
lengths determined by those algorithms will also be valid with respect to Eq-DEPF.

5.2.4 Solving Eq-DEPF directly

The relative merits of solving Eq-DEPF directly (as opposed to Eq-NLP) depend both on
the size and structure of the specific problem and the optimization method to be employed.
A decided advantage of solving Eq-DEPF is avoiding the solution of a difficult subproblem
which is only approximate. It also avoids the necessity (in solving Eq-NLP) of having to
update or recalculate the factorization of the linearized constraints at each new linearization
point. Search directions calculated with respect to the Eq-DEPF objective function have
more accurate information about curvature, and the demand estimate x is allowed to move
more flexibly than in the linear path bk(p) available to subproblem SP(pk) of Eq-NLP.

To be weighed against these advantages is the increase in problem size, both in terms of
the matrix of linear constraints and (in a second-order method) the approximation of the
projected Hessian that must be maintained (to be denoted by W). In current SQP imple-
mentations, the constraint matrix is stored in dense form, while in MINOS the constraints
are stored in sparse form. W is in general dense and is therefore maintained in dense form
in both SQP routines and MINOS.

In both areas the effects on problem size of adding x are critically dependent on the number
of final commodities relative to the number of primary and intermediate commodities.
Since demand is constant for primary and intermediate commodities, the vector x need
only correspond to the final commodities.

Regardless of the dimension of x, adding x to the problem would not significantly increase
the effort of maintaining and factorizing the constraints in MINOS. Indeed, there would be
fewer nonzero coefficients than in SP(pk), since presumably the identity matrix associated
with x is much sparser than Vd(pk). Moreover, since the identity columns associated with
x must be basic (because x is unconstrained in sign), the basis will be sparser since these
columns will displace some columns of A. In contrast, adding columns to the dense repre-
sentation of constraints in an SQP routine might be a significant burden, growing with the
dimensionality of x.

The most serious penalty, however, is with respect to the dimensionaJity of the (approx-
imate) projected Hessian, which equals the dimension of the null space of the binding
constraints. (Problem Eq-DEPF does not inherit the vertex solution property of Eq-NLP.)
Each component of x adds a dimension to this null space unless the associated commodity
balance happens to be slack - which is a rare occurrence for final commodities. In the %
context of MINOS, this has the nice interpretation that the dimensionality of W is increased
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by each production activity that is displaced from the basis by a component of x. Since
W is dense and its factorization must be updated repeatedly, it is unlikely that solving
Eq-DEPF directl) by a second-order method will be viable for a problem with "many" final
commodities. The definition of "many" naturally depends on hardware, computer budget,
and user patience.

Maintenance of a projected Hessian approximation can of course be avoided by use of a first-

order optimization method, such as steepest feasible descent implemented via SLP (with
the trust region bounds in this case). The cost of doing so is an overall !inear convergence
rate. It is significant to note that, once the objective function of Eq-DEPF is linearized, the

problem completely separates into a price problem over constraints (DEPF2)-(DEPF3) and
a supply/demand balance problem over (DEPF1). The price problem can then be dualized,

leaving two very similar prublemn on the supply/demand balances.

5.3 Convergence to what?

The methods we have surveyed may be classified into two groups with respect to the kind

of solutions they determine. SLCP, the equivalent Wilson's SQP method (given global
solutions to the indefinite subproblems), and the other linearization methods compute com-

plementary solutions. In an optimization framework, this amounts to seeking a Karush-
Kuhn-Tucker point with the additional qualitative constraint that the Lagrange multipliers
equal the "primal" variables. This screening process ensures that if the iterates converge,
the point located is a complementary (equilibrium) solution.

In contrast, the other SQP variants, SLP, and the projected Lagrangian algorithms are gen-
eral optimization procedures that can be applied in principle to either Eq-NLP or Eq-DEPF.
They do not presume any special structure, nor can they directly utilize the prior knowl-
edge that the globally optimal objective value is zero. Iterations terminate upon finding any
KKT point of the problem. Given the lack of convexity, however, there is no demonstrable
guarantee that the stopping point will be a global minimum, i.e., an equilibrium solution.

We discover then the Scylla and Charybdis of solving general equilibrium problems. On one
side we have a group of methods which insist on complementary solutions of the linearized
subproblems. If the iterates converge for one of these methods, they do in fact converge to
an equilibrium solution. However, we still have very little in the way of a rigorous reason
why they should converge globally from any starting point. On the other side, we have a

battery of optimization methods with strong theoretical and/or practical properties which
guarantee (or at least make likely) the global convergence of iterates from any starting
point. Unfortunately, they may converge to a local minimum rather than to an equilibrium
solution. We can readily identify this unsatisfactory termination, but what to do in that

event is not at all clear. We make some suggestions relative to this matter in the next
subsection.

II
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5.3.1 Descent from nonoptimal stationary points

We have established that global optima of problem Eq-DEPF are in one-to-one correspon-
dence with those of Eq-NLP. There is no particular reason to expect that a similar correspon-
dence would apply to nonoptimal stationary points. This naturally induces the question:
if an algorithm applied to one problem terminates at a nonoptimal Karush-Kuhn-Tucker
point, is there any perspective available from the other formulation that would suggest a
direction of escape? Since any stationary point of Eq-NLP provides a feasible solution of
Eq-DEPF, we are in a good position to examine this point from the perspective of Eq-DEPF.
We do so below, and exhibit two sensible possibilities for escape-one that yields a local
descent and one that does not. In contrast, a stationary point of Eq-DEPF need not provide
a feasible solution of Eq-NLP, and meaningful additional perspective can be obtained only
from a feasible point. In the case of a jointly feasible point, we can obtain some partial
results which we present first.

Stationary points of Eq-DEPF

Suppose that (p,.t, 9, -0) is a KKT point of Eq-DEPF with associated Lagrange multipliers
(P, , ). In light of equation (DMx) from Section 5.2.2, we can conclude that 5i = 0 ==>
ii - d,(p) >_ 0. If Pi > 0, then the associated inequality of (DEPF1) in Section 5.2.1 must
be binding. Consequently, to obtain a feasible solution of Eq-NLP (Section 3.3), we must
again have Yi > d(p). Thus, the necessary and (obviously) sufficient condition for deriving
a feasible solution of Eq-NLP from a stationary point of Eq-DEPF is that x > d(P).

Recall from Observation 4 of Section 5.2.2 that hT [i"- d(p)] = 0. This general notation
obscures the fact that in practice we would only define variables xi for final commodities, i.e.,
those for which di(p) is not a known constant. If hi > 0 for all final commodities i, then the
above equality and nonnegativity of xi - di(p) clearly requires i = di(p). Hence, by virtue
of Observation 2 of Section 5.2.2, the price normalization can ensure that any stationary
point of Eq-DEPF which is feasible for Eq-NLP must be an optimal (equilibrium) solution.
This particular price normalization is precisely the one shown in Chapter 6 to guarantee
the feasibility and solvability of all lin2arized subproblems of Eq-NLP or Eq-NLCP.

Stationary points of Eq-NLP

Suppose that (pk, yk, vk) is a KKT point of Eq-NLP with associated Lagrange multipliers
(P, , ). (We use the superscript notation because we will be using the descent formulas
of Section 5.2.3.) If the point is nonoptimal, it must be the case that vk > 0 and P pk %
(recall the discussion of Section 3.3.1). This means that (pk, yk, vk) solves LP(pk) but not
SLCP(pk), as defined in Sections 4.4 and 4.1, respectively. A feasible solution of Eq-DEPF
is immediately obtained by setting xk = d(pk). We again investigate search directions of the
form (p-p , _ -Xg-yk, f -V), where (p, , ,i5) must be a feasible solution of Eq-DEPF.
In this special context, the descent formula simplifies to:

-(P) T Y) + - !iTxk) - 27k.
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One might intuitively suspect that solving SLCP(pk) would provide a descent direction
when viewed from the perspective of problem Eq-DEPF. Unfortunately, this is not the case.
Let (pl, 9, VJ) solve SLCP(pk) and set t = dk(p). Then, using Walras' law (D2) and property
(W1) of Section 2.1:

V k)T t = (pk)T [d(pk) + Vd(pk)p] = p 'd(pk).

Since xk = d(pk), we obtain l' = f; - vk. This looks promising at first, but since (pk, yk, vk)

solves LP(p k ) and ( V, , O) is feasible for LP(p), it must be the case that V > vk. Hence, the
local information indicates that relinearizing at some step in the direction pi-pk would not
produce a descent in problem Eq-DEPF. This is discouraging but not necessarily terminal.
We certainly are not satisfied with the current KKT point, and even if a movement toward P
does not yield a local descent, it might at least initiate a new set of iterates converging to a
different KKT point. In particular, following a path of complementary solutions thereafter
would ensure that the nonoptimal point would not be revisited.

Another potential search direction is available without further calculation: the Lagrange
multipliers from the nonoptimal stationary point of Eq-NLP. If we define i = -vTd(pk)p
and examine the multiplier conditions (M1)-(M4) from Section 3.3.1 (with P replaced by pk,
etc.), we observe that (P, i, , ) is indeed a feasible solution of Eq-DEPF. Now recall from
Observations 3 and 4 Af Section 3.3.1 that - = 0 and vk = Td(pk). In the present context,
the latter means vk = ,Txk. Also, (pk)T, = 0 because of property (H1) of Section 2.1. The
descent formula then reduces to V" = - 2 vk, which is strictly negative if the stationary point
is nonoptimal. In fact, this shows the direction to be a steepest descent direction since it
obtains zero for the two nonnegative terms in the formula for '.

Observe that the estimated descent of -2vk could not be obtained by a unit step in the
direction of (i, , ), ). This is because xk = d(pk) at the current point, which means
that the value of the objective is vk in both Eq-NLP and Eq-DEPF. Since the objectivw is
bounded below by zero, the maximum attainable descent is -vk. A unit step will produce
descent if:

-pi >+ pIli-d()II ,
- iTVd(pk)p + lp 2[di d~k]3I

where we have inserted the definition of i and applied property (W1) of Section 2.1. We
demonstrated in Observation 5 of Section 3.3.1 that the first term of this expression is
nonnegative. Hence, it is impossible to say anything a priori as to whether a unit step will
necessarily yield a descent.

What we have established, then, is that the Lagrange multipliers for a nonoptimal KKT
point of problem Eq-NLP can be used to define a steepest local descent direction from that
point when viewed in the context of problem Eq-DEPF. Some step in the direction P - pk

may then be used to define a new linearization point. Iterates from that sensible point may
then lead to a different KKT point, provided once again that something is done to prevent
a return to the nonoptimal point.
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6

SOLVABILITY OF LINEARIZED SUBPROBLEMS

In this chapter we verify earlier assertions that the normalization vector h can be chosen
in such a way as to guarantee the feasibility and solvability of all linearized subproblems
encountered in the solution of Eq-NLCP or Eq-NLP. By solvability we mean that all sub-
problem constraint matrices belong to a class that can be successfully processed by Lemke's
almost-complementary pivoting method. In particular, for such matrices Lemke's method
can terminate on a secondary ray only if the problem is infeasible. However, the requisite
choice of h also guarantees feasibility of the linearized subproblem as long as the original
equilibrium problem is feasible. In light of the properties of computable general equilib-
rium models outlined in Chapter 2, we may safely presume feasibility (and existence of an
equilibrium solution) for any properly formulated model. Consequently, the combination of
solvability and feasibility guarantees that each linearized subproblem has a complementary
solution and that this solution can be computed by at least one method, i.e., Lemke's.

The demonstration of solvability is a direct application of some results of Garcia [Gar 73] on
classes of matrices amenable to solution by Lemke's method. His results extend somewhat
the earlier results of Eaves [Eav 71] in a way that is remarkably well suited to our purposes.
Feasibility will follow immediately from problem structure and the same choice of h as
required for solvability.

In previous work, the author [Sto 85] and Eaves [Eav 87] have recognized that choosing
h = e and incorporating a matching artificial column guarantees the solvability of the LCP

subproblems. Mathiesen in [Mat 87] applies Eaves' earlier results [Eav 71] to a specific
small problem in order to investigate the effects of the linearization point and the choice
of num6raire on the solvability and existence of solutions to the LCP subproblems. The
results obtained below are both more general and justify stronger conclusions.

'a'

6.1 Relevant results for Lemke's method

Here we briefly summarize the definitions and results of Garcia [Gar 73] which we will apply
in the next section. We have made some minor modifications to notation and wording so
as to better fit our context. Use of the vector d and of index sets J and K should not be
confused with previous uses in this document.

Denote the standard linear complementarity problem by q/M and the augmented form with
an artificial covering vector d by d/q/M. That is, we seek a solution of the system:

z > O, z, 0 , q + dzo + M z > O

with the property:
qTz+zTMz=O and z0 =0.

47
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48 6.2 Application to a linearized subproblem

Let C(q, M) and C(d, q, M) denote the solution sets of problems q/M ,nd d/q/M, respec-
tively. Of particular interest in the following will be the special LCP diM and its solution

set C(d, M).

We will use the following definitions and results, which require no elaboration.

Definitions of two matrix classes as those matrices satisfying:

E(d): z E C(d,M), z $ 0 =: 3 > O, 0#O such that:
(i) -mT_; > 0

(ii) z> and d+Mz+MTi > 0 .

E*(d): z E C(d, M) =>- z = O.

Lemma 3.1. E(d) = E*(d) for any d > 0 or d < 0.

Observation. E(O) = L 2 of Eaves [Eav 71].

Corollary 5.2. Let dlq/M be partitioned as:

di qj Mjj MjK b

d / qK / MKJ MK 0
0 r -aT  0 0.

where M., and MKK are square matrices, a and b are columns, dj, d, r, a and b are all

positive, M E E(0), and MK,. E E(dK).
If C(d, q, M) has a secondary ray, then q/M is infeasible.

Commentary

If the partition K is vacuous, then the structure and results of the above corollary correspond
to those of Theorem (11.5) of Eaves [Eav 71].

It is important to note that the covering vector d is specially constructed to be strictly
positive except for the zero in the last position. Since this is not a standard specification,
in practice it would be necessary to modify the default specification of the covering vector
incorporated in available software for implementing Lemke's algorithm.

6.2 Application to a linearized subproblem

We are concerned with the linearized subproblem encountered at any iteration of any of
the sequential methods we study. For simplicity, we will suppress the superscripts referring
to iteration number. The results also do not depend on the nature of the linearization
employed, so we will non-specifically refer to the linearized demand functions as b + Bp.
Where we depart from previous modes of presentation is that now we take explicit account
of the partitioning of commodities into final commodities and primary or intermediate
commodities.

-9t



6.2 Application to a linearized subproblem 49

Accordingly, partition the vector of prices as p = (r,a), where 7r corresponds to final
commodities and a to primary or intermediate commodities. We also, with a suggestive
abuse of notation, use 7r and a to denote index sets for partitioning the rows of the activity
analysis matrix A, the elements of the vector b, and the rows and columns of the matrix
B. Since the a partition corresponds to commodities for which demand is constant, it
follows that B,, would be zero in any sensible linearization. B, may also be zero, as in

the case B = Vd(7r, a). BW would not be zero, for instance, if B = [Vd(7r, a) + VTd(r, a)].
If B,, = 0, b, is constant across all iterations and represents the negative of aggregate
endowments (which by definition are zero for intermediate commodities).

With this notation, we may state the linearized subproblem as:

Find a complementary solution of:

(SP1) -B,7r - B,,a + A,.y + hv > b, I r >0

(SP2) -B,,ir + A,,.y > b, I a> 0

(SP3) -(A,.)Tir - (A,.)-ra > 0 1 y > 0

(SP4) -hT 7r - 1 i v

(SP5) 7r, a, y > 0

In order to correspond exactly to the structure of Garcia, we must now write the normal-
ization equality (SP4) as two inequalities and divide the artificial variable v into its positive
and negative parts, denoted by v. and v-, respectively. Given these notational conventions,
we can partition the data of the linearized subproblem so as to correspond directly to the
partitioning of Garcia's Corollary 5.2 (above):

dddb ,____ B - B,, , A,. -h +h

dy0 (A.)T (A )T

1 -1 _ hT

0 1 L L -hT

Before verifying that this data satisfies the hypotheses of the corollary, it is worth mentioning
why it is advantageous to restrict the price normalization to the final commodity prices
alone. As a theoretical issue, it does not matter. As a computational issue, excluding the

bprices a from the normalization leaves a problem structure that requires each subproblem to
be feasible with respect to the commodity balances (SP2), which are identical to the original

problem constraints and do not chiange from iteration to iteration. If the artificial coluin
extended into these constraints, then feasibility would be attained only at equilibrium where
v = 0. We may thus expect a more reasonable and constrained path to the solution if the
artificial column is limited to the final commodity constraints. If B,, 0, we also may be

' '/ p
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50 6.2 Application to a linearized subproblem

able to take computational advantage of any simple bounds that appear in the constraints
(SP2). This also could not be done if the artificial column extended into these constraints.

We now verify that the problem data for any linearized subproblem will satisfy the conditions
for Garcia's corollary if h > 0. Note that h corresponds to both a and b of the matrix in
the corollary, which are required to be positive. We may presume that all components of
the covering vector (except the final zero) are positive as required.

Claim: MKK E E*(dz:).
Proof. M.K is clearly skew-symmetric. Hence, zT'MKKZK = 0 for all ZK. Since dK > 0, ifT=
z, _ 0 and zTdK + z1MKKZ = 0, it must be that z, = 0. That is, ZK E C(d, MKK) =
Z= 0.

Claim: If h > 0, then M E E(0).
Proof. Let z = (r, a, Y, v-, v+) E C(d, M) and 2 = (fr, o, , ,+) be the two vectors relevant
to the definition of class E(d) above. Here, we are temporarily concerned with d = 0. Given
that h > 0, it is clear that z > 0 and Mz > 0 requires 7r = 0. Similarly, 2 > 0 and -MTi > 0
requires * = 0. (As an interesting aside, note that the submatrix of M obtained by deleting
the rows and columns corresponding to 7r is skew-symmetric. Thus, for any z satisfying
z > 0 and Mz > 0 we have zTMz 0, i.e., z E C(0,M).) Given that r = r= 0, we can
write:

-B,a + nr. (y - )-h(v_ - _) + h(v, - )

A,.( y- )
Mz + MTi = -(A,. )T(a &)

0

0

We now consider two cases. First, if a = 0, then we simply take 2 = z = (0, 0, y, v-, v+).

Then - MTi = Mz > 0 and Mz+ MT= 0. Second, ifa 0 we take 2 = (0, a, ,0, 0) < z.

Then

0 -Boo + A,.y - hv + hv+

0 A,.y

-MTi= -(Ar.)Ta >0 and Mz+MT,= 0 >0.
0 0

0 0

So both cases satisfy the conditions (i) and (ii) of the definition of E(0). Hence, Al E E(0)
provided h > 0.
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Since the problem data satisfy both of the conditions for Garcia's Corollary 5.2, we can
conclude that each linearized subproblem is in a class that can be solved by Lemke's method
provided that the problem is feasible. But if h > 0 the only way that the subproblem can
be infeasible is for the inequalities (SP2)-(SP5) to be inconsistent. These inequalities do
not change from subproblem to subproblem, however, and their inconsistency would imply
that no equilibrium solution exists. Since any properly formulated general equilibrium
model does have an equilibrium solution, we can conclude (as a theoretical matter) that
each linearizcd subproblem has a complementary solution which can be found by Lemke's
method.

.
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7

COMPUTATIONAL COMPARISONS

In this chapter we present the results of some computational experiments applying five
different solution methods to each of two small test problems. The two problems are rea-
sonably well known in the equilibrium literature and are small enough to permit hundreds
of model solutions from different starting points. Despite the small size, they possess prop-
erties which serve to illustrate much of what can go right and wrong in solving a general
equilibrium model. The solution methods implemented are as follows:

1. SLCP (Section 4.1) applied to problem Eq-NLCP (Section 3.2)
2. SLP (Section 4.4) applied to problem Eq-NLP (Section 3.3)
3. symmetric positive semidefinite linearization (Section 4.6)

applied to Eq-NLCP
4. projected (augmented) Lagrangian method (Section 4.5)

applied to Eq-NLP
5. direct solution of problem Eq-DEPF (Section 5.2.1).

Another linearization strategy discussed in Section 4.6 was abandoned after disappointing
intitial results. In practice it turns out that the skew-symmetric approximation matrix

[Vd(p) - VTd(p)] is prone to be so rank-deficient as to prevent the attainment of a basic
solution of the linearized subproblem that has all positive prices. As all equilibrium price
vectors for the two test problems are strictly positive, a method based on pivotal solutions
of the subproblems could never find an equilibrium using this linearization.

If there is a single word to describe the results obtained, it is diversity. A few generalizations
are supported, but there are numerous exceptions to every conclusion. Before presenting
the results, we briefly describe the test problems and discuss the specific implementations
of the solution methods.

7.1 Two test problems

The first problem was devised by Scarf [Sca 73, pp. 113-119] and has become a standard
problem for testing and comparing solution methods for general equilibrium problems. The
model contains 14 commodities and 26 linear production activities. The commodities may
be subdivided into 7 final consumption commodities (for which there are no initial endow-
ments), 3 primary commodities, and 4 intermediate commodities (these terms were defined
in Section 2.1). Aggregate final demand is the sum of the demands of 4 consumers, each
with a Cobb-Douglas utility function. This means that demand for final commodity i be-
comes unbounded as p, - 0. If none of the primary commodities has a positive price, then
income is zero and so is demand. The Scarf model has a unique equilibrium.

In [Keh 85] Kehoe describes a tiny equilibrium problem specifically constructed so as to have
multiple equilibria. The model has 4 final commodities and 2 linear production activities.

N 53
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54 7.2 Solution methods implemented

Final demand is the sum of the demands of 4 Cobb-Douglas consumers, each with an initial
endowment of only a single commodity. The problem was devised so as to have an unstable
equilibrium at unit prices, which implies the existence of at least two other equilibria. (Proof
of this relies upon the global index theorem described in both [Keh 82] and [Keh 85].) Kehoe
establishes that the model has exactly 3 equilibria. When prices are normalized to sum to
4, these are:

(0.6377, 1.0000, 0.1546, 2.2077) (Eql)

E e(1.0000, 1.0000, 1.0000, 1.0000) (Eq2)

1(1.1005, 1.0000, 1.2346, 0.6649) (Eq3).

Both production acLtvities are strictly positive at all equilibria, which results in P2 having
the same value for all equilibria. This is because a binding excess profit constraint for the
second production activity requires that p, + P3 + P4 = 3 p2. The intersection of this and
the price normalization fixes p2 = 1, which in turns restricts the values of the other three
prices to lie on the subsimplex pi + P3 + P4 = 3. The other binding profit constraint then
forces all equilibria to lie on a line in this subsimplex. Indeed, any iterates obtained in
solving the model must lie on this line if both production activities are positive. We found
these observations in unpublished work of Mathiesen and Rutherford [MR 83], who in turn
attribute them to unpublished work of Kehoe (which later appeared in [Keh 84]). These
special features of the model prove to have significant consequences for the computational

performance of the methods studied.

7.2 Solution methods implemented

All five methods are implemented by means of specialized user subroutines in MINOS.
In particular, SLCP, SLP, and the symmetric linearization method are all implemented %

by means of the same program to sequentially revise the linearized constraints and define ,

the appropriate objective function for the subproblem. MINOS is used solely to manage
and solve the individual subproblems, not to "supervise" the overall solution process. In
contrast, the other two methods directly apply MINOS as an optimization algorithm for
solving problems Eq-NLP and Eq-DEPF. Use of a common computational vehicle makes the
experiments more manageable and also enhances the comparability of the solution times
for the various methods.

7.2.1 Departures from standard SLCP method

Using MINOS to solve the subproblems means that SLCP is actually implemented as (Wil-
son's) SQP method (Section 4.2) applied to problem Eq-NLP. Thus, the LCP subproblems
are not processed by Lemke's method, but rather are solved as indefinite quadratic pro-
grams. With this approach, it is possible that some subproblems will not be solved to global
optimality (i.e., complementarity). This in fact happens from many starting points at one
or two of the early iterations of the method. Nonetheless, failure to achieve complementarity
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does not prevent convergence for either problem from any starting point. The consequence
of the MINOS implementation is that the "simulated" SLCP iterations follow a somewhat
different path than would a "pure" implementation.

Another difference in implementation arises from the choice of step length and its relation
to avoiding zero prices at linearization points. The most elegant approach would be to
implement a rigorous line-search procedure, applying a merit function (such as that of
Eq-DEPF) that becomes infinite at points outside the domain of the demand functions. We
regret that time did not permit undertaking the programming effort required to accomplish
such a solution. (We do, however, evaluate the merit function at each point obtained by
a sequential method and therefore can assess progress after the fact.) Any other appoach
to determining a step length and avoiding boundaries is necessarily heuristic. Mathiesen's
approach is to allow zero prices in the LCP solutions but then to take less than a unit step
if one or more of the prices is zero. This means that the merit function cannot be evaluated
at the LCP solution if there is a zero price; it must be evaluated at the linearization point
determined by the step length. A more attractive and convenient alternative in the context
of our implementation with MINOS is simply to impose reasonable nonzero lower bounds on
the prices. This means that the merit function can be evaluated at all subproblem solutions
and that a unit step is always feasible. With this approach, however, a binding lower bound
in the subproblem can and generally does prohibit the attainment of a complementary
solution. For the most part, these bounds are the true cause for the lack of complementarity
in certain early iterations that we alluded to above.

Intuitively, we know that obtaining a zero price in a linearized subproblem means that the
linear approximation did not properly reflect the true boundary behavior of the demand
functions. It is thus arguable that obtaining such a solution is of no more value than
obtaining a non-complementary solution with more reasonable prices. In some sense, we
might expect that preventing the early iterations from obtaining extreme prices would
enhance overall convergence. As a crude test of this hypothesis, we applied the first three
methods to each problem using lower bounds of 0.01 and 0.0001. On balance, use of the
0.01 bounds proved superior, so the rest of the results pertain to computations using the
higher bounds.

7.2.2 A symmetric linearization

For the third method we define a sequential linearization scheme that utilizes a symmetric,
negative semidefinite approximation matrix (referred to as Bk in Section 4.6). Since the
demand functions enter as -d(p) in the commodity balances, it is -Bk that appears in
the linearized constraints. The resulting constraint matrix is then bisymmetric and positive
semidefinite, implying that the subproblem can be solved as a convex QP on the price space
alone. The production activity levels are obtained from the dual, i.e., from the Lagrange
multipliers on the excess profit constraints. We derive this approximation matrix from the
sums of the so-called Slutzky matrices for the demand functions of the individual consumers.
For a consumer with income 0 and demand function d(p,0), the Slutzky matrix S(p, 0) is
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defined as:
S(p, 0) E Vd(p, 6) + Ved(p, 6) [d(p, 0)]T.

(The derivation may be found in any intermediate textbook of microeconomics.) The matrix
S(p, 0) is symmetric and negative semidefinite; in particular, p is in its null space. These
properties are clearly preserved under summation across a finite collection of consumers. In
both of our test problems, we know the demand of each consumer as a function of prices and
income, as well as the definition of individual income in terms of endowments and prices.
Hence, at any price vector p we can construct the individual Slutzky matrices and obtain
their sum. We thus obtain a meaningful symmetric, negative semidefinite linearization of
the aggregate demand function d(p).

Note that the Slutzky matrix is properly defined only for final consumption items. It is

thus significant that, in a problem with primary and/or intermediate commodities (such as
the Scarf problem), an approximation matrix derived from Slutzky matrices is nonzero only
in the submatrix corresponding to prices of the final commodities. Such an approximation
not only has B,. = 0 in the rows designated (SP2) in Section 6.2, it further has B,, =
0 in inequalities (SPI). Other symmetric approximations, such as any scheme involving

[Vd(7r, a) + VTd(7r, a)], produce a nonzero B,,, in inequalities (SP2). These terms not only
increase the density of the matrix, they also produce a distortion in the commodity balances
for the primary and intermediate commodities.

We are not aware of any previous attempts to use Slutzky matrices as a basis for lineariz-
ing final demand functions. It is unfortunate that such a construction is not possible for
an arbitrary nonintegrable aggregate demand function. It is applicable only to problems
involving sums of known individual demand functions for which the Slutzky matrices can
be constructed. In the following discussions we will use the abbreviation SLTZ to refer to
this sequential linearization method based on Slutzky matrices.

7.2.3 Using MINOS to solve Eq-NLP and Eq-DEPF

As described in Section 4.5, the features that characterize the projected augmented La-
grangian method (as implemented in MINOS to solve nonlinearly constrained problems)
are the Lagrangian term based on multiplier estimates and the penalty parameter weight-
ing the quadratic penalty term. If both terms are suppressed, the resulting procedure
automatically implements SLP (without trust regions) on any problem with a linear objec-

tive function (such as Eq-NLP). In our context, this simple, low-overhead implementation
of SLP naturally proves to be somewhat faster than the specialized user program we devised
to implement all three of methods SLCP, SLP, and SLTZ. For maximum comparability, we
will report the results for these three methods based on common use of the special user

program.

The interesting question with respect to using MINOS on Eq-NLP is whether the additional
incorporation of the Lagrangian and/or penalty terms proves to be a help or a hindrance
relative to SLP. The terms impart to each subproblem some of the underlying nonlinear
nature of the original problem, and the penalty term in particular is intended to provide
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a stabilizing influence that promotes global convergence. This benefit comes at the cost
of solving subproblems with a general nonlinear objective, which is furthermore nonconvex
in the case ot Eq-NLP. To address this question, we solved each test problem from many
different starting points, both with and without the Lagrangian term and for different values
of the penalty parameter.

An important aspect of solving problem Eq-DEPF directly is that no initial values for the
prices need to be supplied. A standard Phase I procedure will automatically generate a
feasible solution of the linear constraints; see again Section 5.2.1. For this solution, x, y
and v may very well be zero, but the prices determined will be normalized and feasible with
respect to the excess profit constraints. Thus, the first evaluation of the demand functions
occurs at feasible prices. This is in sharp contrast to all the other solution methods which
require the user to divine a set of starting prices. These may or may not be feasible
depending on the method used to obtain them. As it is meaningless to attempt to solve
Eq-DEPF from numerous starting points, the only relevant comparison is between a single
solution time for Eq-DEPF and the distribution of solution times for the other methods.
The interesting issue in solving Eq-DEPF is the effect on solution time of differing values of
the penalty parameter in the objective function. This is readily investigated, and we report
below the effects of this parameter on solution times for each test problem.

7.2.4 Specification of starting points

Since our purpose is to investigate both the robustness and speed of convergence of the
various methods from arbitrary starting points, we deem it preferable to avoid randomiza-
tion and instead construct a uniform grid of prices covering the (interior of the) relevant
price simplex. For the Scarf problem, we construct a grid over the 10 prices for final and
primary commodities. To obtain a manageable number of points, the range for each price
is subdivided into 3 (equal) intervals, the endpoints of which define a grid of 220 points on
the simplex. For the Kehoe problem, we can afford a finer grid based on 10 intervals, which
results in 286 starting points. For each problem, the minimum allowable starting price is
0.01. This is relative to price normalizations requiring the 4 prices in the Kehoe model to
sum to 4 and the 7 final commodity prices in the Scarf model to sum to 7.

It is important to bear in mind that the purpose of this grid of prices is to examine how well
the methods perform even when given a starting point near the boundary of the simplex
- and hence near the boundary of the domain of definition of the demand functions d(p).
Many of the points have one or more prices at the minimum of 0.01. Indeed, for the Scarf
problem each starting point has at least 7 of the 10 prices at the minimum value. For
the Kehoe problem, 202 of the 286 points have at least 1 of the 4 prices at the minimum
value. Such points naturally tend to produce rather unstable initial iterations. This allows
for some worst-case comparisons, but such results are not necessarily representative of the
performance of the method in a realistic setting.

In practice, model users may well have reasonable "priors" as to relative prices and, at the
very least, can readily avoid specifying initial prices near the boundary of the domain of the

demand functions. To assess the performance of the methods when given more reasonable
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starting points, we do the following. For the Scarf problem, we generate another 220 starting
points by taking a convex combination of the near-boundary points and the center of the
simplex (i.e, a vector of ones). We use a weight of 0.7 on the center point. (For reference,
all but one of the equilibrium prices are near unity; the "outlier" is approximately 0.5.) In
contrast, for the Kehoe problem, we simply examine the results for the subset of 84 starting
points that are not near the boundary.

7.2.5 Convergence criteria

The significant feature of imposing lower bounds on the prices is that any subproblem solu-
tion for methods SLCP, SLP, and SLTZ produces a feasible solution for problem Eq-DEPF.
We can then utilize the value of the Eq-DEPF objective function as a rigorous measure of
progress for the method and also as a viable stopping criterion. For the convergence crite-
rion. we established the extremely strict requirement that both the value of the Eq-DEPF
obi '-tive and the absolute value of artificial variable v must be less than 10-'. This was cho-
Sen, ifter early experiments indicated inadequately precise convergence of the SLTZ method
with a criterion of 10- ', which is the tolerance for judging feasibility and optimality in
MINOS. Those MINOS tolerances were also tightened to 10- ' for the SLTZ method. The
stoppping criterion utilized is much more demanding than the kinds of criteria typically
employed in solving equilibrium models.

In using MINOS to solve problem Eq-DEPF, we also found it worthwhile to use the tighter
10- ' feasibility and optimality tolerances. This did not appreciably increase solution time,
but did improve the accuracy of the final solution. For solving problem Eq-NLP with
MINOS, the default MINOS criteria for convergence proved more than adequate to ensure
convergence within the tolerances defined above for the other methods.

7.2.6 Hardware, software and timing measures

All of the computational experiments were performed on an IBM 3090 Series 200 computer,
kindly made available to us by the IBM Palo Alto Scientific Center. The operating system
is VM/CMS running as a "guest host" under VM/XA. Both MINOS and the required user
subprograms were compiled and executed using Release 2 of Version 2 of VS FORTRAN. No
attempt was made to utilize the available vectorization and parallel processor capabilities.
Even without using such features, 3090 computing power is something of an "overkill" for
the problems solved. As a result, we will be comparing solution times measured in fractions
of a second. For the purposes of our comparison of methods, it is the relative solution times
that matter. All reported solution times exclude program linking, MINOS initialization,
and printing of the final solution.

7.3 Results for the Scarf problem

The existence of a unique equilibrium solution for the Scarf problem allows for a straightfor-
ward assessment of computation times. It is meaningful to examine the range and average
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of solution times across all starting points as well as ratios of solution times for different
methods from the same starting points. To begin with the simpler discussions, we first ad-
dress using MINOS to solve problems Eq-DEPF and Eq-NLP. We then examine at greater
length the comparisons of methods SLCP, SLP, and SLTZ.

7.3.1 Solving Eq-DEPF with MINOS

As we indicated above, solving problem Eq-DEPF does not require the specification of an
initial starting point. What we examine is the effect of the choice of penalty parameter on
solution time. We solved the Scarf model a small number of times for each of 5 different
settings of the penalty parameter. After averaging out some small random fluctuations in
the individual trials, representative solution times are as follows:

parameter 0.01 0.1 10 10 100

CPU seconds 0.145 0.132 0.145 0.140 0.149

The relative variation is not particularly significant, and we have no explanation for the
bimodal pattern. A solution time on the order of 0.14 seconds for Eq-DEPF should be kept
in mind when reviewing the results for the other methods below.

7.3.2 Solving Eq-NLP with MINOS

We solve problem Eq-NLP using four different strategies:

Lagrangian term penalty parameter

(1) no 0

(2) yes 0

(3) no 10

(4) yes 10

Strategy (1) is effectively SLP because of the linearity of the objective function of Eq-NLP.
Since no Lagrange multiplier estimates are available for the first linearized subproblem,
strategies (1) and (2) solve the same initial subproblem, and so do strategies (3) and (4).

The most significant result of these comparisons is that all four strategies succeed in locating
the equilibrium solution from all 220 near-boundary starting points. Solution times range
from 0.1 to 0.5 seconds across all starting points. We can also compare solution times across
methods initiated from the same starting points. We do so by computing the ratios of the
solution times for strategies (2)-(4) to that of strategy (1). With only two exceptions, the
solution times for strategies (3) and (4) range between 95% and 102% of that for strategy

-* (1); the average is about 99%. Curiously, the number of linearizations required from each
starting point is the same for all three of these strategies. Hence, the presence of a penalty
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term did not affect the convergence rate obtained, and, contrary to prior expectations, the
more complicated objective function for the subproblem did not increase overall solution
time. On balance, we do not consider the variation in solution times for these three strategies
to be at all significant.

In contrast, the solution times for strategy (2) range from 62% to 153% of that for strategy
(1); the average is about 105%. In most, but not all, cases the number of linearizations
was reduced by the presence of the Lagrangian term. Nonetheless, solution times were

frequently longer despite the improved convergence rate. There is no apparent pattern to
explain why solution times increased for some starting points and decreased for others. In
particular, the distance of the starting point from the equilibrium point is not in any way
related to the solution time. We conjecture that the wide variation in relative solution rimes
is attributable to differing qualities of the Lagrange multiplier estimates obtained from the
first two or three subproblems. In the absence of a stabilizing penalty term, the multiplier

estimates from the first subproblem are likely to be quite poor, given a linearization point
near the boindary of the simplex. Poor multiplier estimates can in turn lead to distorted

solutions for the next subproblem, which may well take longer to compute if the solution is
distant from that of the previous subproblem solution.

Since the primary purpose of these comparisons is to assess the necessity of the Lagrangian
and penalty terms for achieving global convergence from near-boundary starting points, we
do not think it worthwhile to repeat the experiment from the interior starting points.

7.3.3 Three sequential methods

We first discuss the results for the set of starting points with at least 7 of the 10 prices set
at the minimum value of 0.01. It is significant that all three of the methods SLCP, SLP, and
SLTZ succeeded in finding the equilibrium solution from all 220 of these deliberately poor
starting points. The character of the results partition the starting points into two groups.
The most varied results are obtained for a group of 84 points at which all 3 of the prices for
primary commodities are set at 0.01. (This means that consumer income is near zero, since
the Scarf model has no endowments of the final consumption goods.) We use the solution
times for SLCP as a basis for comparison. These range from 0.19 to 0.46 seconds across all
84 points. For the most part, the number of linearizations required is in the range of 4-6,
but 10 troublesome points required 10-12 linearizations. The variation is not related in any
visible way to the distance of the starting point from the equilibrium.

We now look at solution times (from the same starting point) for the SLP and SLTZ
methods expressed relative to the solution time for SLCP. For SLP these time ratios range
between 0.37 and 1.54, with an average of 0.87. The most extreme of these deviations are

attributable to significantly different numbers of linearizations required. For the most part,
buit not universally, solution times for the same number of linearizations are markedly lower
for SLP. For SLTZ, the range of relative solution times is front 0.14 to 0.78, with an average

of 0.48. In a small number of cases, SLTZ required fewer linearizations than SLCP, but it
generally required 2 or 3 more - and occasionally 2 or 3 times as many. These excursions
reflect an underlying phenomenon that SLTZ iterations occasionally produce an increase in
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the value of the Eq-DEPF merit function. These uphill segments of the path may endure
for a few linearizations, but descent is eventually regained. Lower overall solution times in
the face of the higher linearization counts clearly point to substantially lower solution times
for solving the smaller SLTZ subproblems.

The results are quite different and less diverse for the other 136 points. The solution times
for SLCP range from 0.41 to 0.88 seconds, which is almost wholly above the range of solution
times for the other group of points. Here, the number of linearizations required is generally
in the range 9-12. The relative solution times for SLP are more tightly confined in the
range 0.32-0.71, with an average of 0.45. For the most part, the number of linearizations
is somewhat higher than that for SLCP, so these time savings reflect lower solution times
for the individual subproblems. Quite surprisingly, on this group of points SLTZ generally
required fewer linearizations than either SLCP or SLP. We do not know how to account
for this result, but it naturally means that solution times are substantially lower for SLTZ.
Solution times relative to SLCP are in the range 0.14 to 0.35, with an average of 0.21.

The above results certainly attest to the robustness of all three sequential methods when
applied to a well-behaved problem such as the Scarf model. We now look at more "normal"
performance as measured by the other set of 220 points, for which no starting price is lower
than 0.7. Here, we tabulate the range and average solution times for the three methods so
as to permit a somewhat meaningful comparison with the time required to solve problem
Eq-DEPF directly.

CPU seconds SLCP SLP SLTZ

minimum 0.157 0.125 0.018

maximum 0.393 0.285 0.075

average 0.219 0.170 0.034

An Eq-DEPF solution time of 0.14 seconds is basically at the lower end of the range of
solution times for SLCP and SLP, but it is almost twice the value of the upper end of the
range for SLTZ.

Turning to the relative solution times from identical starting points, the results show a strong

concentration near the average with a significant number of outliers above the average. SLP
solution times relative to SLCP range between 0.59 and 1.68, with a mean of 0.79. For
SLTZ the range is 0.1-0.36, with an average of 0.16. Underlying causes for the deviations
are essentially the same as those discussed above for the collection of points with near-zero
endowment prices. No pattern appears with respect to the distance of the starting point
from the equilibrium, but there is an interesting pattern with respect to the solution time for
SLCP. This pattern is discernible in Figures 1 and 2, which plot the relative solution times
of SLP and SLTZ versus the solution time for SLCP. (The highest outlier was excluded
from each figure so as to obtain better resolution for the rest of the points.) The general
downward trend in the clusters of points indicates that, on groups of starting points for
which SLCP encountered increasing difficulty, the other two methods suffered less than
proportional increases in solution time. The scatter also indicates that SLP and SLTZ

I
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frequently, but not universally, encountered difficulties with the same starting points. The
conclusions which state themselves, however, are the overwhelming superiority of the SLTZ
method on the Scarf problem and the generally superior performance of SLP relative to
SLCP.

7.4 Results for the Kehoe problem

The existence of three distinct equilibrium solutions for the Kehoe problem rather compli-
cates the assessment of computational results. Examining the range and average of solution
times for a given method across all starting points can provide an indication of how long it
takes the method to find some equilibrium point, but both range and average may depend
upon the proportion of times each equilibrium point is found. Also, it does not seem partic-
ularly meaningful to compare solution times for different methods from the same stArting
point unless the methods converge to the same equilibrium point. It is interesting to note
when different methods converge to different points, but it is not clear what else can be
said abouL such cases. To begin again with the simpler discussions, we first address using
MINOS to solve problems Eq-DEPF and Eq-NLP. We then examine at greater length the
comparisons of methods SLCP, SLP, and SLTZ.

7.4.1 Solving Eq-DEPF with MINOS

As for the problem of Scarf, we solve the Eq-DEPF formulation of the Kehoe problem
for 5 different settings of the penalty parameter. For all parameter values, the solution
finds the (Eql) equilibrium point. Again, the variation is not at all significant: 0.018
seconds is required for a parameter value of 0.1, with the other values requiring 0.02 seconds.
Convergence to (Eql) with a solution time on the order of 0.02 seconds for Eq-DEPF should
be kept in mind when reviewing the results for the other methods below.

7.4.2 Solving Eq-NLP with MINOS

We solve the Eq-NLP formulation of the Kehoe problem using the same four strategies as
identified above for the Scarf problem. Again, the most significant result is that, from all
286 starting points, all four strategies succeed in finding one of the equilibrium solutions,
including the unstable equilibrium on several occasions. It is interesting that, from each
starting poin', strategies (2)-(4) converge as a group to the same equilibrium point, which
almost half the time is a different point than that found by strategy (1). Moreover, with
only one exceptional point, the solution times and number of linearizations for strategies
(2)-(4) are virtually identical.

For all strategies, solution times range from about 0.02-0.11 seconds across starting points.
Great variation is apparent in the relative solution times of similarly behaving strategies
(2)-(4) as compared to strategy (1). For the 115 points from which all strategies converge
to (Eqi), relative solution times range from 51% to 265%, with an average of 138%. Only 9
points result in all strategies converging to the unstable equilibrium; here the range is much
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tighter (88% to 107%) and the mean is 103%. Finally, all strategies converge to (Eq3) from
37 points. The range in relative solution times is 61% to 187%, with an average of 117%.
Again, there is no apparent pattern to explain these variations in relative performance.
Moreover, the results for the subset of 84 interior starting points very much resemble the
results for the entire set. With such a diversity of results, we are in no position to draw any
viable conclusions or generalizations.

7.4.3 Three sequential methods

As we indicated earlier, of the 286 starting points generated for the Kehoe problem, 202
points (intentionally) have at least one price at the minimum of 0.01. While we might
intuitively expect to see markedly different behaviors of the methods in the subset of near-
boundary points as compared to the subset of 84 interior points, this did not turn out to be
the case for the Kehoe problem. In light of this result, we will discuss all 286 cases together
in order to utilize the larger sample size.

Both SLCP and SLP successfully converged to an equilibrium from all starting points.

SLCP never reached the unstable equilibrium (Eq2), while SLP converged to (Eq2) on 14
occasions. SLTZ also never found the unstable equilibrium and converged to (Eql) from 181

starting points. From the other 105 points, SLTZ clearly targeted (Eq3) as a limit point,
but the convergence criterion was met before the iterates obtained a precision comparable
to that of the other methods. For instance, the terminal values for p, were either 1.1003
or 1.1008 (depending upon the direction of approach). This is representative of a general
pattern for SLTZ on the Kehoe model that iterations terminate upon narrowly satisfying the
convergence criterion. In contrast, the final iteration of SLCP or SLP almost always satisfies
conditions several orders of magnitude stronger than the specified convergence criterion.

This precise "jump" at the last iteration is typical of Newton's method. This difference
in convergence patterns is very important, but we do not believe it justifies declaring that
the SLTZ method failed to converge; it just fails to converge at a satisfactory rate (on the
Kehoe problem).

It is significant that, out of 286 starting points, all three methods ccnverged to (Eql) in

only 71 cases and to (Eq3) on only 29 occasions. Pairwise intersections are also important
in terms of defining subsets of starting points over which to evaluate relative solution times.
SLCP and SLP jointly converge to (Eql) from 83 starting points and to (Eq3) from 35
points. SLCP and SLTZ jointly converge to (Eql) from 146 starting points and to (Eq3)
from 71 points.

Before presenting results on relative solution times, we again tabulate the range and average
solution times for the three methods across all starting points. Given different patterns as
to which equilibrium is located, these figures are not as meaningful as those for the Scarf
problem, but they do allow a loose comparison with the time required to solve problem
Eq-DEPF directly.

* .. .
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CPU seconds SLCP SLP SLTZ

minimum 0.025 0.016 0.086

maximum 0.111 0.097 1.382

average 0.077 0.057 0.475

An Eq-DEPF solution time of 0.02 seconds is basically at the lower end of the range of
solution times for SLCP and SLP. The times for SLTZ lie almost wholly above the upper
end of the ranges for SLCP and SLP. This is in strong contrast to the results for the Scarf
problem.

We examine relative solution times from identical starting points only for points from which
the methods compared converged to the same equilibrium. As for the Scarf problem, the
results show strong concentrations near the averages with significant numbers of outliers
above the averages. SLP solution times relative to SLCP range between 0.38 and 1.89,
with a mean of 0.75. This is quite similar to the results for the Scarf problem. For SLTZ,
the story is completely different: the range is 1.4-32, with an average of 6.1. No pattern
appears with respect to the distance of the starting point from an equilibrium. Indeed, as
can be seen from Figure 3, there is no particular pattern at all to the relative performance
of SLP. In sharp contrast, Figure 4 illustrates that the generally poor performance of SLTZ
is markedly worse when the process converges to (Eq3). Note that the two different symbols
for points in the figures correspond to the two different equilibrium points obtained. We
again have excluded the highest outlier from each figure.

The decidedly poor performance of SLTZ on the Kehoe problem is attributable to the
following general pattern of convergence. The worst cases arise when the first subproblem
solution that obtains positive levels for both production activities also obtains prices that
are near the unstable equilibrium (Eq2). The iterates never converge to this equilibrium
- no matter how close it may be - but proceed toward another equilibrium at a linear

rate. Along this path, the Eq-DEPF merit function increases for many iterations, often by
several orders of magnitude. A peak is eventually reached, and descent is resumed at a
very poor linear rate. It is remarkable that convergence is achieved at all. Intuitively, this
pattern suggests that the unstable equilibrium exerts a perverse kind of attraction which
does not draw the iterates toward (Eq2) but seriously retards the rate at which the iterates
are drawn to one of the other equilibria. The proximity of (Eq3) to (Eq2) causes this effect
to be particularly pronounced for iterates that target (Eq3).

7.5 Commentary

The great diversity of the above results makes it difficult to derive any meaningful general-
ities and conclusions. It is important to recognize, however, that all of the methods studied
did in fact converge to an equilibrium, regardless of the quality of the starting point. Even
the extremely disappointing performance of the SLTZ method on the Kehoe problem does
not reflect aimless wandering of the iterates through the simplex. An equilibrium was def-
initely targeted; the problem was with the rate of convergence, not an actual absence of
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convergence.

For the most part, sequential methods SLCP and SLP demonstrate comparable performance
on both test problems. Solution times for SLP are on average somewhat better than those for
SLCP, but there are a number of outliers for which SLP times are significantly higher. The
results do not permit any conclusion as to whether supplementing SLP with a Lagrangian
term or a penalty term improves overall performance. With such a mixture of results, it is
probably not worth the effort to add the extra terms in practice. What may well be worth
implementing is direct solution of problem Eq-DEPF. Solution times for this method rival
the best of the results for SLCP and SLP, and use of Eq-DEPF does not require the user to
specify a set of initial prices.

The risky venture is clearly the SLTZ method. The evidence indicates that, for a problem
with a unique equilibrium, this method can compute an accurate equilibrium in as little
as 10-20% of the time required by any of the other methods. On the other hand, in a
multiple equilibrium context, the SLTZ method can perform so poorly as to border on being
non-convergent for all practical purposes. Considerable further experimentation with other
models would be required to ascertain whether it is exclusively the multiplicity characteristic
that accounts for the extreme differences in the performance of SLTZ.

It is tempting to suggest the development and use of some form of hybrid method, but such
hybrids are much easier to contemplate than to implement in practical software. Indeed,
if a user must be prepared to "switch" to SLCP, say, when another method appears to be
converging too slowly, as a practical matter it would be easier to employ SLCP throughout.
If it is feasible to solve an SLCP subproblem once or a few times, it is probably feasible to
solve it several times. It is often the case that the actual reason for wanting to use a lower
dimensional method such as SLTZ is that the problem is too big to solve in an SLCP/SLP
or Eq-DEPF context. In this case, it is of no practical value to know that SLCP or SLP
would quadratically converge to the solution once we had used SLTZ to bring the iterates
"close enough" to the equilibrium.

p
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8

SUMMARY AND PERSPECTIVE

There is no question but that general equilibrium problems can be very difficult to solve.

Nonetheless, the results of our research establish a number of characteristic features of

CGE problems which make them in some sense more benign than the general nonlinear
complementarity problem or the general (nonconvex) nonlinear program.

First, under mathematical assumptions that have reasonable economic content, the
Eq-NLCP problem is known to have at least one feasible and complementary solution. In im

an optimization context, this mears that the equivalent problem Eq-NLP is feasible and has
a global minimum objective value of zero, which can in fact be attained.

Second, we have shown that, under a seemingly reasonable rank condition, a complementary

(optimal) solution exists which is a vertex of the linearized constraints at that point.

Third, we have derived an easily implemented rule for constructing a price normalization
which, in conjunction with a matching artificial column, guarantees that any linearization
of the nonlinear problem has a feasible, complementary solution. Moreover, given the rank
condition for existence of a basic complementary solution, this same construction guarantees
that a complementary solution can be successfully computed by Lemke's method.

Fourth, we have seen that any regular equilibrium solution exerts a domain of attraction
for Newton and quasi-Newton iterates. Within this domain, we may expect quadratic
convergence of Newton iterates, and superlinear convergence is possible for quasi-Newton
iterates. SLCP, SLP, and projected Lagrangian methods all produce Newton iterates once
the complementary (optimal) basis has been determined. We have some assurance from
genericity analysis that regular solutions are in fact typical in equilibrium models. .0

Fifth, we have derived an equivalent linearly constrained formulation of the CGE problem
(Eq-DEPF) that has two important uses. One, its objective function can be used as a
differentiable exact merit function for judging and perhaps guiding the iterates of any of
the sequential solution methods studied. We have used this function to demonstrate that

the search directions generated by any method which uses Taylor's expansions to linearize
the demand functions can be considered a descent direction for some value of an arbitrary
positive penalty parameter. The second contribution of this development is that optimizing
problem Eq-DEPF directly can be an effective means of computing an equilibrium solution
for models of an appropriate size and structure.

These are helpful and encouraging results, both in terms of improving our understanding
of the computational properties of equilibrium problems and in suggesting directions for
the next generation of solution procedures. There remains, nonetheless, a basic theoretical
dilemma which cannot be resolved at our current level of understanding. On one hand,
we have a collection of optimization methods which have been designed to produce iterates
that converge from almost any starting point. Unfortunately, for the equilibrium problem, V
we cannot rule out the possibility that these iterates may converge to a non-equilibritil
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point. On the other hand, we have Newton and other methods that obtain complementary
solutions of the subproblems. These methods produce iterates that do in fact converge to
an equilibrium solution, if they converge. Unfortunately, we can only suggest reasons why
iterates of such methods might always be globally convergent on an equilibrium problem;
nothing definitive has been established. In the face of this theoretical dilemma, however, the
l)reponderence of the computational evidence (both our own and that of other researchers)
shows that: (a) Newton-like methods do tend to produce iterates that converge from virtu-
ally any starting point, and (b) optimization approaches do tend to find the global optimum
of the nonconvex equilibrium problem. This situation certainly suggests that the kinds of
equilibrium models that are formulated in practice possess certain favorable computational
properties that theoretical analysis has yet to discover.

Before closing this document, we first present a brief section on extending our results to
equilibrium models that contain nonlinear production technologies with constant returns to
scale. We then suggest what we believe to be some promising and important directions for
future research.

8.1 Extension to nonlinear constant-returns production

Many computable general equilibrium models represent the production side of the economy
in terms of differentiable nonlinear production or profit functions that reflect constant re-
turns to scale. Given the theoretical and practical importance of such structures, we desire
to ascertain whether or not the results of this research can be extended to apply to such
models. We outline here some very recent and preliminary observations on this matter del
which indeed suggest that our findings have more general applicability.

Since most (and possibly all) applied general equilibrium models with nonlinear production
specify an explicit profit function (or, if not, a production function for which the profit
function is known), we focus our attention on models with nonlinear profit functions. In
the case of constant returns to scale, a unit profit function is specified which does not lor

determine the level of operation. Profit functions that represent closed, convex, constant-
returns production possibilities are known to be continuous and homogeneous of degree
one and convex in prices. For our computational purposes, it will be necessary to assume
that the unit profit function is at least twice continuously differentiable. To apply the
correspondence between Wilson's SQP method and SLCP, continuous third derivatives are
also required. As a practical matter, most of the functions employed in applied models are
infinitely differentiable wherever they are once differentiable.

We generalize the notion of n linear production activities to n independent (constant-
returns) production sectors whose operations are rel)resented by unit profit functions rj(p).
Let r(p) be the n-vector of these individual unit profit functions. Since r(p) is homogeneous
of degree one, Euler's law implies that r(p) = Vr(p)p. It follows that the excess profit
conditions, r(p) 5 0, may be equivalently stated as Vr(p)p < 0. The gradient functions
are in turn homogeneous of degree zero, which implies that V2 r3 (p)p = 0 for all j. The
Hessians V'r,(p) are, of course, symmetric and are furthermore positive semidefinite by
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8.1 Extension to nonlinear constant-returns production 71

virtue of the convexity of the ri(p). By the lemma of Hotelling, the profit-maximizing net-

output combination (per unit of operation) is given by [Vrj(p)]T. A positive component of
this vector represents a net output of the commodity; a negative component indicates a net
input.

We again follow the presentations of Kehoe [Keh 82] and Mas-Colell [MasC 85]. To mimic
our earlier notation for the linear production case, we define a matrix function A(p)
VTr(p). The levels of operation for the individual production sectors are represented by the
n-vector y. For the appropriate analogies to properties (Al) and (A2) of Section 2.2, we
reasonably assume the availability of free disposal and that no prices exist for which A(p)
permits positive output without input. Existence of equilibrium then follows from the usual
fixed-point arguments; see either of the above references.

Given existence, we may now specify the equilibrium problem as the following specially
structured NLCP:

Find a complementary solution of:

(CR1) -d(p) + A(p)y + hv > 0 1 p 0

(CR2) -AT(p)p > 0 I y_ 0 -

(CR3) - hTp =-1 ± v

(CR4) p , y > 0

Note that this formulation has the same basic structure as problem Eq-NLCP. The only
difference is that the previously constant matrix A has been replaced by the matrix function
A(p). This generalization in no way affects the analysis used in Section 3.3 to demonstrate
that the problem can be equivalently stated as a nonlinear program which minimizes v over
the same inequalities. Similarly, a formulation analogous to Eq-DEPF can be constructed,
although, in light of the additional nonlinearity of A(p), this formulation will more resemble
the general case (DEPF) than the special case Eq-DEPF (see Section 5.2.1). Thus, we
may also apply the theory, algorithms, and convergence analysis of optimization methods
to the equilibrium problem with nonlinear, constant-returns production. In particular,
given adequate differentiability of the unit profit functions, the basic equivalence between
SLCP and Wilson's SQP method applies to this problem as well. What we have not yet
investigated is the effect of the nonlinear A(p) on the descent results we derived in Chapter 5.

In applying Newton's method to the above NLCP, the linearized subproblem which is con-
structed at a linearization point (pk, yk) is the following:
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Find a complementary solution of:

(LCR1) [ yV2j(pk)-Vd(pk)]p + A(pk)y + hv > d(pk) j p>O

(LCR2) -AT(pk)p > 0 y> 0

(LCR3) -hTp = -1 1 v

(LCR4) p , > 0

The above relations are also the appropriate linearized constraints for applying any of the
optimization methods we have discussed in this research. Two observations are important.

First, the constraint matrix indeed has the form we studied in Chapter 6. This means
that, if the relations (LCR1)-(LCR4) are consistent, the subproblem has a complementary
solution which can be successfully computed by Lemke's method. Given the assumption
that A(p) satisfies property (A2) of Section 2.2 for all p, we can in fact conclude that each
subproblem is feasible, provided that the price normalization is constructed as prescribed
in Chapter 6.

Second, the symmetry and positive semidefiniteness of the Hessian terms appearing in
the above linearization may in fact cause the subproblem to be better behaved than the
subproblems encountered with linear production. In particular, solving the subproblem
as a quadratic program may be more reliable in this case. Moreover, it is intuitive Lo
suspect that the submatrix [Ej y4V~rj(pk)-Vd(pk)] is more amenable to approximation
by a symmetric positive semidefinite matrix, such as we studied with the SLTZ method in
the previous chapter.

It would appear, then, that most of the results we have obtained in this research will also
apply to the important case of nonlinear production with constant returns to scale, given
the existence of sufficiently differentiable unit profit functions. Further analysis is required
to ensure that we have not overlooked any subtleties arising in the nonlinear situation. If
not, this extension will greatly broaden the applicability of our research.

8.2 Future research

We believe that it is extremely important to better understand the empirical observations
that Newton methods (and other linearization methods) tend to be globally convergent
".,ben aP-r;,, t- problem Eq-NLCP and that optimization algorithms successfully find the
global minimum of nonconvex problems Eq-NLP and Eq-DEPF. We think there is more
to be learned in this regard from study of the optimality conditions for the optimization
formulations of the equilibrium problem. In particular, given properties (H2) and (W2) of
Section 2.1, further investigation of the second-order conditions may be fruitful, even though
our analysis to date has not revealed anything definitive. Since many of the models solved
in practice employ sums of demand functions derived from Cobb-Douglas or more general
constant-elasticity-of-substitution utility functions, it may well be that special properties
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of these functions are the source of good computational performance. This suggests also
studying the optimality conditions as specialized to these popular functional forms.

We think it worthwhile to develop and evaluate computational procedures which combine
any (and all) of the sequential methods studied with a rigorous line search and choice of
step length based on the merit function available through problem Eq-DEPF. The prin-
cipal intent here is both to avoid uphill steps (such as have been seen to occur with the
SLTZ method, for example) and to stabilize the initial iterations of the algorithms. It is
easy to focus on asymptotic behavior of the iterates, but we have observed repeatedly in
our computational experiments that the first few linearizations can be critical in terms of
establishing the path that is to be followed to the equilibrium solution. It is here that a
line search accounting for the divergence of the linearization from the true functions could
prevent wasted iterations on extreme and unrealistic subproblem solutions.

A major disappointment of the current research concerns the equivocal results obtained
for symmetric linearization approaches (such as SLTZ) that allow for the solution of a
subproblem in a lower dimension. Not only does the theoretical analysis of Chapter 5
demonstrate that such methods can produce uphill seaich directions, the computational
results of Chapter 7 confirm that such behavior does in fact occur on actual models. On
the other hand, in some contexts the symmetric methods could perform many times better
than the other methods studied. It is a true irony that we set out in this research to
establish the viability of symmetric approximation methods, but we seem to have done
more to demonstrate their inherent riskiness.

We see two possible approaches to investigate for models of a size that makes directly
solving Eq-DEPF or repeatedly solving SLCP/SLP subproblems a costly undertaking. The

first avoids the solution of such subproblems by using symmetric linearizations. It is then
necessary to devise (somehow) an overall sequential scheme that is both globally convergent
and convergent at an acceptable (linear) rate. The second formulates subproblems based on
Taylor's expansions (thereby promoting overall convergence at a quadratic rate) but seeks
alternative procedures for solving the (large) subproblems that may be less costly than
procedures known to date.

For the first approach, we may consider using a rigorous Eq-DEPF line search to supervise
a symmetric linearization procedure (whether it be SLTZ, a Jacobi method, or some form
of projection method). This certainly would prevent the kind of uphill excursion that we
observed on Kehoe's multiple equilibrium problem. Unfortunately, it is not at all clear what

to do if the subproblem solution provides a search direction that is uphill for all positive
step lengths. This is where further research may suggest a superior formulation of the
subproblem. Given the availability now of the Eq-DEPF merit function, we are in a much
better position to pursue such research than previously.

The other direction is seeking improved methods for solving the specially structured sub-
problems which arise in the course of SLCP or SLP. Current solution procedures based
on Lemke's method or MINOS, for instance, can take advantage of the general sparsity of
the matrix of linearized constraints, but they cannot make any use of the skew-symmetric
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structure corresponding to the production activities. This suggests the study and develop-
ment of special factorization routines that recognize the special structure of complementary
and almost-complementary bases for these subproblems. The block-angular nature of the
subproblem also makes it amenable to solution by a decomposition procedure, particularly
in the linear case of an SLP subproblem or the convex case of an SQP subproblem (which
utilizes the Jacobian of the demand functions in the constraints but uses a positive semidef-
inite approximation in the objective function). Earlier thoughts on applying decomposition
to linearized equilibrium problems are presented at some length in [Sto 85]. An effective
decomposition strategy would lead to solving subproblems that axe roughly the same size
as those encountered in using a symmetric linearization method.

On balance, we believe that we have made some valuable incremental progress in this
research, but much remains to be studied and understood before the solution of large-scale
(and structurally general) general equilibrium models becomes a routine undertaking.

V V
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TR SOL 88-7: Formulation and Solution of Economic Equilibrium Problems, by John S. Stone

We develop and assess a number of equivalent mathematical formulations of the general equilibrium
problem in economics. We begin with the traditional representation as a nonlinear complementarity
problem and develop alternative representations as nonlinear optimization problems. All of our
formulations depart from previous approaches by including an explicit linear equality for price
normalization and a matched artificial variable which must be zero at any equilibrium solution. Thisstructure has the theoretical and computational advantage that any linearization of the equilibrium ,

problem has a feasible complementary solution. Moreover, under a reasonable rank condition, a basic
complementary solution exists which can be successfully computed by Lemke's almost-complementary
pivoting method.

We describe five general-purpose methods which can be applied to solving the equilibrium problem.
The common feature of these methods is solving a sequence of linearized problems. We establish a
number of equivalences between the methods, when applied to the equilibrium problem, and assess
their local and global convergence properties in that context. An important new tool in this analysis is
another problem formulation based on a differentiable exact penalty function. This formulation
provides, perhaps for the first time, a rigorous means of evaluating the progress of a sequential
method for computing an equilibrium solution. Our analysis reveals a basic theoretical dilemma in
solving general equilibrium problems by these sequential methods. One group of methods produces
iterates that converge from any starting point, but the sequence may converge to a non-equilibrium
point. Another group produces iterates that may fail to converge, but successfully converging
sequences do attain an equilibrium.

We perform a number of computational experiments on two small problems from the Jilerature. The
results show considerable variation in the solution times for the various methods, but all methods
succeed in locating an equilibrium, even from poor starting points. This successful performance (in
addition to that reported by other researchers) suggests that the kinds of general equilibrium models
formulated in practice possess certain favorable computational properties that theoretical analysis has
yet to discover.
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